Loading…
Joint Computing Resource, Power, and Channel Allocations for D2D-Assisted and NOMA-Based Mobile Edge Computing
Mobile edge computing (MEC) and non-orthogonal multiple access (NOMA) have been considered as the promising techniques to address the explosively growing computation-intensive applications and accomplish the requirement of massive connectivity in the fifth-generation networks. Moreover, since the co...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.9243-9257 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mobile edge computing (MEC) and non-orthogonal multiple access (NOMA) have been considered as the promising techniques to address the explosively growing computation-intensive applications and accomplish the requirement of massive connectivity in the fifth-generation networks. Moreover, since the computing resources of the edge server are limited, the computing load of the edge server needs to be effectively alleviated. In this paper, by exploiting device-to-device (D2D) communication for enabling user collaboration and reducing the edge server's load, we investigate the D2D-assisted and NOMA-based MEC system. In order to minimize the weighted sum of the energy consumption and delay of all users, we jointly optimize the computing resource, power, and channel allocations. Regarding the computing resource allocation, we propose an adaptive algorithm to find the optimal solution. Regarding the power allocation, we present a novel power allocation algorithm based on the particle swarm optimization (PSO) for the single NOMA group comprised of multiple cellular users. Then, for the matching group comprised of a NOMA group and D2D pairs, we theoretically derive the interval of optimal power allocation and propose a PSO-based algorithm to solve it. Regarding the channel allocation, we propose a one-to-one matching algorithm based on the Pareto improvement and swapping operations and extend the one-to-one matching algorithm to a many-to-one matching scenario. Finally, we propose a scheduling-based joint computing resource, power, and channel allocations algorithm to achieve the joint optimization. The simulation results show that the proposed solution can effectively reduce the weighted sum of the energy consumption and delay of all users. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2018.2890559 |