Loading…
Numerical analysis of multi-scale pressure pulsation on the energy accumulation for submarine-based tracking and pointing systems
One of the main goals of submarine designers and researchers is to estimate the influence of submarine fluid dynamics for submarine-based optical tracking and pointing systems. In this study, firstly, based on the basic flow governing equation and hierarchical grids, the numerical simulation method...
Saved in:
Published in: | Measurement and control (London) 2021-03, Vol.54 (3-4), p.196-208 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the main goals of submarine designers and researchers is to estimate the influence of submarine fluid dynamics for submarine-based optical tracking and pointing systems. In this study, firstly, based on the basic flow governing equation and hierarchical grids, the numerical simulation method of DNS (direct numerical simulation) is adopted to simulate the seawater flow around the submarine at 6° yaw angle and 107 Reynolds number. Secondly, the transformation equations from the earth coordinate system to the optical axis system have been deduced and the ultimate influence of pressure torques on the tracking system is studied. Transfer functions of the coarse channel direct current (DC) torque motor and fine channel fast steering mirror (FSM) also have been modeled and deduced. On this basis, the time domain step responses of both subsystems are analyzed by MATLAB Simulink. Finally, performance analyses have been deduced by comparing the error variation and vortices evolution. It revealed that the frequency characteristics of multi-scale pressure pulsation mainly depended on the lengths of submarine hull or its appendage, as well as the fluid dissipation and random interaction. In general, the coarse channel appears a good compensation performance at low frequency and large amplitude error that caused by the middle-scale pressure pulsation. Contrarily, the FSM fine channel exerts an excellent control effect for higher frequency and small amplitude error caused by small-scale pressure pulsations. |
---|---|
ISSN: | 0020-2940 2051-8730 |
DOI: | 10.1177/0020294021989748 |