Loading…

Additional Criteria for Playground Impact Attenuating Sand

Falls within children’s playgrounds result in long bone and serious injuries. To lower the likelihood and severity of injury, impact attenuating surfaces (IAS) are installed within the impact area (fall zone). There are three primary IAS materials used, namely: granulated rubber products, wood fibre...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2021-10, Vol.11 (19), p.8805
Main Authors: Eager, David, Chapman, Chris, Qi, Yujie, Ishac, Karlos, Hossain, Md Imam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Falls within children’s playgrounds result in long bone and serious injuries. To lower the likelihood and severity of injury, impact attenuating surfaces (IAS) are installed within the impact area (fall zone). There are three primary IAS materials used, namely: granulated rubber products, wood fibre products, and sand. There is a deficiency with existing IAS test methods in that they do not take account of sand degradation over time. When children use the playground, sand degradation can occur when sand produces fines and smaller particles with low sphericity and angular which fill the voids between the sand particles. These fines and smaller particles tend to bind the sand and lower its impact attenuating performance. This paper proposes an additional IAS test to eliminate sands that degrade above an established threshold rate after installation due to normal usage. IAS degradation properties of fifteen IAS sands were tested including sand particle shape, sand particle distribution, percentage fines and sand particle degradation. This accelerated ageing test method is applicable only to sands and not rubber or wood fibre IAS products. The best IAS sands were sourced from quarries located on rivers that had eroded volcanic outcrops. These sands were shown to degrade the least and had little to no fines, and their particle shape was rounded to well-rounded. The most reliable source for good quality IAS sands on these rivers was on specific bends. The sand mined at these locations consistently had a tight particle size distribution.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11198805