Loading…
Attention-based multi-residual network for lung segmentation in diseased lungs with custom data augmentation
Lung disease analysis in chest X-rays (CXR) using deep learning presents significant challenges due to the wide variation in lung appearance caused by disease progression and differing X-ray settings. While deep learning models have shown remarkable success in segmenting lungs from CXR images with n...
Saved in:
Published in: | Scientific reports 2024-11, Vol.14 (1), p.28983-11, Article 28983 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lung disease analysis in chest X-rays (CXR) using deep learning presents significant challenges due to the wide variation in lung appearance caused by disease progression and differing X-ray settings. While deep learning models have shown remarkable success in segmenting lungs from CXR images with normal or mildly abnormal findings, their performance declines when faced with complex structures, such as pulmonary opacifications. In this study, we propose AMRU++, an attention-based multi-residual UNet++ network designed for robust and accurate lung segmentation in CXR images with both normal and severe abnormalities. The model incorporates attention modules to capture relevant spatial information and multi-residual blocks to extract rich contextual and discriminative features of lung regions. To further enhance segmentation performance, we introduce a data augmentation technique that simulates the features and characteristics of CXR pathologies, addressing the issue of limited annotated data. Extensive experiments on public and private datasets comprising 350 cases of pneumoconiosis, COVID-19, and tuberculosis validate the effectiveness of our proposed framework and data augmentation technique. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-79494-w |