Loading…

A deep learning framework to predict binding preference of RNA constituents on protein surface

Protein-RNA interaction plays important roles in post-transcriptional regulation. However, the task of predicting these interactions given a protein structure is difficult. Here we show that, by leveraging a deep learning model NucleicNet, attributes such as binding preference of RNA backbone consti...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-10, Vol.10 (1), p.4941-13, Article 4941
Main Authors: Lam, Jordy Homing, Li, Yu, Zhu, Lizhe, Umarov, Ramzan, Jiang, Hanlun, Héliou, Amélie, Sheong, Fu Kit, Liu, Tianyun, Long, Yongkang, Li, Yunfei, Fang, Liang, Altman, Russ B., Chen, Wei, Huang, Xuhui, Gao, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein-RNA interaction plays important roles in post-transcriptional regulation. However, the task of predicting these interactions given a protein structure is difficult. Here we show that, by leveraging a deep learning model NucleicNet, attributes such as binding preference of RNA backbone constituents and different bases can be predicted from local physicochemical characteristics of protein structure surface. On a diverse set of challenging RNA-binding proteins, including Fem-3-binding-factor 2, Argonaute 2 and Ribonuclease III, NucleicNet can accurately recover interaction modes discovered by structural biology experiments. Furthermore, we show that, without seeing any in vitro or in vivo assay data, NucleicNet can still achieve consistency with experiments, including RNAcompete, Immunoprecipitation Assay, and siRNA Knockdown Benchmark. NucleicNet can thus serve to provide quantitative fitness of RNA sequences for given binding pockets or to predict potential binding pockets and binding RNAs for previously unknown RNA binding proteins. Interactions between proteins and RNA are an important mechanism for post-transcriptional regulation, but predicting these interactions is difficult. Through a deep learning approach, here the authors predict RNA-binding sites and binding preference based on the local physicochemical properties of the protein surface.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-12920-0