Loading…

Gaussian Weighted Eye State Determination for Driving Fatigue Detection

Fatigue is a significant cause of traffic accidents. Developing a method for determining driver fatigue level by the state of the driver’s eye is a problem that requires a solution, especially when the driver is wearing a mask. Based on previous work, this paper proposes an improved DeepLabv3+ netwo...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2023-04, Vol.11 (9), p.2101
Main Authors: Xiang, Yunjie, Hu, Rong, Xu, Yong, Hsu, Chih-Yu, Du, Congliu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fatigue is a significant cause of traffic accidents. Developing a method for determining driver fatigue level by the state of the driver’s eye is a problem that requires a solution, especially when the driver is wearing a mask. Based on previous work, this paper proposes an improved DeepLabv3+ network architecture (IDLN) to detect eye segmentation. A Gaussian-weighted Eye State Fatigue Determination method (GESFD) was designed based on eye pixel distribution. An EFSD (Eye-based Fatigue State Dataset) was constructed to verify the effectiveness of this algorithm. The experimental results showed that the method can detect a fatigue state at 33.5 frames-per-second (FPS), with an accuracy of 94.4%. When this method is compared to other state-of-the-art methods using the YawDD dataset, the accuracy rate is improved from 93% to 97.5%. We also performed separate validations on natural light and infrared face image datasets; these validations revealed the superior performance of our method during both day and night conditions.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11092101