Loading…

Scott convergence and fuzzy Scott topology on L-posets

We firstly generalize the fuzzy way-below relation on an -poset, and consider its continuity by means of this relation. After that, we introduce a kind of stratified -generalized convergence structure on an -poset. In terms of that, -fuzzy Scott topology and fuzzy Scott topology are considered, and...

Full description

Saved in:
Bibliographic Details
Published in:Open mathematics (Warsaw, Poland) Poland), 2017-06, Vol.15 (1), p.815-827
Main Authors: Liu, Hongping, Chen, Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We firstly generalize the fuzzy way-below relation on an -poset, and consider its continuity by means of this relation. After that, we introduce a kind of stratified -generalized convergence structure on an -poset. In terms of that, -fuzzy Scott topology and fuzzy Scott topology are considered, and the properties of fuzzy Scott topology are discussed in detail. At last, we investigate the Scott convergence of stratified -filters on an -poset, and show that an -poset is continuous if and only if the Scott convergence on it coincides with the convergence with respect to the corresponding topological space.
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2017-0067