Loading…
Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
In this paper, we investigate the fractional p -Kirchhoff -type system: { M ( ∫ R 2 N | u ( x ) − u ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s u = μ g ( x ) | u | β − 2 u + a a + b h ( x ) | u | a − 2 u | v | b , in Ω , M ( ∫ R 2 N | v ( x ) − v ( y ) | p | x − y | N + p s d x d y ) ( − Δ )...
Saved in:
Published in: | Boundary value problems 2018-05, Vol.2018 (1), p.1-18, Article 78 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate the fractional
p
-Kirchhoff -type system:
{
M
(
∫
R
2
N
|
u
(
x
)
−
u
(
y
)
|
p
|
x
−
y
|
N
+
p
s
d
x
d
y
)
(
−
Δ
)
p
s
u
=
μ
g
(
x
)
|
u
|
β
−
2
u
+
a
a
+
b
h
(
x
)
|
u
|
a
−
2
u
|
v
|
b
,
in
Ω
,
M
(
∫
R
2
N
|
v
(
x
)
−
v
(
y
)
|
p
|
x
−
y
|
N
+
p
s
d
x
d
y
)
(
−
Δ
)
p
s
v
=
σ
f
(
x
)
|
v
|
β
−
2
v
+
b
a
+
b
h
(
x
)
|
v
|
b
−
2
v
|
u
|
a
,
in
Ω
,
u
=
v
=
0
,
in
R
N
∖
Ω
,
where
Ω
⊂
R
N
is a smooth bounded domain,
(
−
Δ
)
p
s
is the fractional
p
-Laplacian operator with
0
<
s
<
1
<
p
and
p
s
<
N
.
a
>
1
,
b
>
1
satisfy
2
<
a
+
b
<
p
s
∗
.
1
<
β
<
p
s
∗
,
p
s
∗
=
N
p
N
−
p
s
is the fractional critical exponent.
μ
,
σ
are two real parameters.
M
(
t
)
=
k
+
λ
t
τ
,
k
>
0
,
λ
,
τ
≥
0
,
τ
=
0
if and only if
λ
=
0
. The weight functions
g
,
f
,
h
change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that
2
<
a
+
b
<
p
≤
p
(
τ
+
1
)
<
β
<
p
s
∗
and
(
μ
,
σ
)
belongs to a certain subset of
R
2
. Also, by using the mountain pass theorem, we prove that there exist
λ
1
≥
λ
0
such that the system admits at least a nontrivial solution for
λ
∈
(
0
,
λ
0
)
and no nontrivial solution for
λ
>
λ
1
under the assumptions
μ
=
σ
=
0
and
p
<
a
+
b
<
min
{
p
(
τ
+
1
)
,
p
s
∗
}
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-018-0998-7 |