Loading…

Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions

In this paper, we investigate the fractional p -Kirchhoff -type system: { M ( ∫ R 2 N | u ( x ) − u ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s u = μ g ( x ) | u | β − 2 u + a a + b h ( x ) | u | a − 2 u | v | b , in  Ω , M ( ∫ R 2 N | v ( x ) − v ( y ) | p | x − y | N + p s d x d y ) ( − Δ )...

Full description

Saved in:
Bibliographic Details
Published in:Boundary value problems 2018-05, Vol.2018 (1), p.1-18, Article 78
Main Authors: Wei, Yunfeng, Chen, Caisheng, Yang, Hongwei, Song, Hongxue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-e93dc11ef0f17fe5ee7b265c593d25b3123e12665d7b595ba877b4caca17ec2d3
cites cdi_FETCH-LOGICAL-c425t-e93dc11ef0f17fe5ee7b265c593d25b3123e12665d7b595ba877b4caca17ec2d3
container_end_page 18
container_issue 1
container_start_page 1
container_title Boundary value problems
container_volume 2018
creator Wei, Yunfeng
Chen, Caisheng
Yang, Hongwei
Song, Hongxue
description In this paper, we investigate the fractional p -Kirchhoff -type system: { M ( ∫ R 2 N | u ( x ) − u ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s u = μ g ( x ) | u | β − 2 u + a a + b h ( x ) | u | a − 2 u | v | b , in  Ω , M ( ∫ R 2 N | v ( x ) − v ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s v = σ f ( x ) | v | β − 2 v + b a + b h ( x ) | v | b − 2 v | u | a , in  Ω , u = v = 0 , in  R N ∖ Ω , where Ω ⊂ R N is a smooth bounded domain, ( − Δ ) p s is the fractional p -Laplacian operator with 0 < s < 1 < p and p s < N . a > 1 , b > 1 satisfy 2 < a + b < p s ∗ . 1 < β < p s ∗ , p s ∗ = N p N − p s is the fractional critical exponent. μ , σ are two real parameters. M ( t ) = k + λ t τ , k > 0 , λ , τ ≥ 0 , τ = 0 if and only if λ = 0 . The weight functions g , f , h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2 < a + b < p ≤ p ( τ + 1 ) < β < p s ∗ and ( μ , σ ) belongs to a certain subset of R 2 . Also, by using the mountain pass theorem, we prove that there exist λ 1 ≥ λ 0 such that the system admits at least a nontrivial solution for λ ∈ ( 0 , λ 0 ) and no nontrivial solution for λ > λ 1 under the assumptions μ = σ = 0 and p < a + b < min { p ( τ + 1 ) , p s ∗ } .
doi_str_mv 10.1186/s13661-018-0998-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_36eba1a99100482c883f4181f837a7ed</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36eba1a99100482c883f4181f837a7ed</doaj_id><sourcerecordid>2041127050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-e93dc11ef0f17fe5ee7b265c593d25b3123e12665d7b595ba877b4caca17ec2d3</originalsourceid><addsrcrecordid>eNp1UctKxTAQLaLg8wPcBVxHM0nTpEsRX6i40XVIc5M2l9pckxS5f29rRd24muG8BuYUxSmQcwBZXSRgVQWYgMSkriUWO8UBVFJgKgTZ_bPvF4cprQlhNSvpQbF-GvvsN703Pm9RcCiFfsw-DAm5EJFGptcpzYSL2syE7tEGP_houi64Sb9N2b6hD587lHw7YNPpofVDiz6sb7uM3Dh8-dJxsed0n-zJ9zwqXm-uX67u8OPz7f3V5SM2JeUZ25qtDIB1xIFwllsrGlpxwyec8oYBZRZoVfGVaHjNGy2FaEqjjQZhDV2xo-J-yV0FvVab6N903KqgvfoCQmyVjtmb3ipW2UaDrmsgpJTUSMlcCRKcZEILO2edLVmbGN5Hm7JahzFOP0iKkhKACsLJpIJFZWJIKVr3cxWImutRSz1qqkfN9SgxeejiSZN2aG38Tf7f9AnIT5PX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041127050</pqid></control><display><type>article</type><title>Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Wei, Yunfeng ; Chen, Caisheng ; Yang, Hongwei ; Song, Hongxue</creator><creatorcontrib>Wei, Yunfeng ; Chen, Caisheng ; Yang, Hongwei ; Song, Hongxue</creatorcontrib><description><![CDATA[In this paper, we investigate the fractional p -Kirchhoff -type system: { M ( ∫ R 2 N | u ( x ) − u ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s u = μ g ( x ) | u | β − 2 u + a a + b h ( x ) | u | a − 2 u | v | b , in  Ω , M ( ∫ R 2 N | v ( x ) − v ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s v = σ f ( x ) | v | β − 2 v + b a + b h ( x ) | v | b − 2 v | u | a , in  Ω , u = v = 0 , in  R N ∖ Ω , where Ω ⊂ R N is a smooth bounded domain, ( − Δ ) p s is the fractional p -Laplacian operator with 0 < s < 1 < p and p s < N . a > 1 , b > 1 satisfy 2 < a + b < p s ∗ . 1 < β < p s ∗ , p s ∗ = N p N − p s is the fractional critical exponent. μ , σ are two real parameters. M ( t ) = k + λ t τ , k > 0 , λ , τ ≥ 0 , τ = 0 if and only if λ = 0 . The weight functions g , f , h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2 < a + b < p ≤ p ( τ + 1 ) < β < p s ∗ and ( μ , σ ) belongs to a certain subset of R 2 . Also, by using the mountain pass theorem, we prove that there exist λ 1 ≥ λ 0 such that the system admits at least a nontrivial solution for λ ∈ ( 0 , λ 0 ) and no nontrivial solution for λ > λ 1 under the assumptions μ = σ = 0 and p < a + b < min { p ( τ + 1 ) , p s ∗ } .]]></description><identifier>ISSN: 1687-2770</identifier><identifier>ISSN: 1687-2762</identifier><identifier>EISSN: 1687-2770</identifier><identifier>DOI: 10.1186/s13661-018-0998-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Approximations and Expansions ; Difference and Functional Equations ; Fractional p-Kirchhoff system ; Mathematics ; Mathematics and Statistics ; Mountain pass theorem ; Multiplicity ; Nehari manifold ; Ordinary Differential Equations ; Partial Differential Equations ; Sign-changing weight functions</subject><ispartof>Boundary value problems, 2018-05, Vol.2018 (1), p.1-18, Article 78</ispartof><rights>The Author(s) 2018</rights><rights>Boundary Value Problems is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-e93dc11ef0f17fe5ee7b265c593d25b3123e12665d7b595ba877b4caca17ec2d3</citedby><cites>FETCH-LOGICAL-c425t-e93dc11ef0f17fe5ee7b265c593d25b3123e12665d7b595ba877b4caca17ec2d3</cites><orcidid>0000-0002-5756-198X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2041127050/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2041127050?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wei, Yunfeng</creatorcontrib><creatorcontrib>Chen, Caisheng</creatorcontrib><creatorcontrib>Yang, Hongwei</creatorcontrib><creatorcontrib>Song, Hongxue</creatorcontrib><title>Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions</title><title>Boundary value problems</title><addtitle>Bound Value Probl</addtitle><description><![CDATA[In this paper, we investigate the fractional p -Kirchhoff -type system: { M ( ∫ R 2 N | u ( x ) − u ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s u = μ g ( x ) | u | β − 2 u + a a + b h ( x ) | u | a − 2 u | v | b , in  Ω , M ( ∫ R 2 N | v ( x ) − v ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s v = σ f ( x ) | v | β − 2 v + b a + b h ( x ) | v | b − 2 v | u | a , in  Ω , u = v = 0 , in  R N ∖ Ω , where Ω ⊂ R N is a smooth bounded domain, ( − Δ ) p s is the fractional p -Laplacian operator with 0 < s < 1 < p and p s < N . a > 1 , b > 1 satisfy 2 < a + b < p s ∗ . 1 < β < p s ∗ , p s ∗ = N p N − p s is the fractional critical exponent. μ , σ are two real parameters. M ( t ) = k + λ t τ , k > 0 , λ , τ ≥ 0 , τ = 0 if and only if λ = 0 . The weight functions g , f , h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2 < a + b < p ≤ p ( τ + 1 ) < β < p s ∗ and ( μ , σ ) belongs to a certain subset of R 2 . Also, by using the mountain pass theorem, we prove that there exist λ 1 ≥ λ 0 such that the system admits at least a nontrivial solution for λ ∈ ( 0 , λ 0 ) and no nontrivial solution for λ > λ 1 under the assumptions μ = σ = 0 and p < a + b < min { p ( τ + 1 ) , p s ∗ } .]]></description><subject>Analysis</subject><subject>Approximations and Expansions</subject><subject>Difference and Functional Equations</subject><subject>Fractional p-Kirchhoff system</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mountain pass theorem</subject><subject>Multiplicity</subject><subject>Nehari manifold</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Sign-changing weight functions</subject><issn>1687-2770</issn><issn>1687-2762</issn><issn>1687-2770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UctKxTAQLaLg8wPcBVxHM0nTpEsRX6i40XVIc5M2l9pckxS5f29rRd24muG8BuYUxSmQcwBZXSRgVQWYgMSkriUWO8UBVFJgKgTZ_bPvF4cprQlhNSvpQbF-GvvsN703Pm9RcCiFfsw-DAm5EJFGptcpzYSL2syE7tEGP_houi64Sb9N2b6hD587lHw7YNPpofVDiz6sb7uM3Dh8-dJxsed0n-zJ9zwqXm-uX67u8OPz7f3V5SM2JeUZ25qtDIB1xIFwllsrGlpxwyec8oYBZRZoVfGVaHjNGy2FaEqjjQZhDV2xo-J-yV0FvVab6N903KqgvfoCQmyVjtmb3ipW2UaDrmsgpJTUSMlcCRKcZEILO2edLVmbGN5Hm7JahzFOP0iKkhKACsLJpIJFZWJIKVr3cxWImutRSz1qqkfN9SgxeejiSZN2aG38Tf7f9AnIT5PX</recordid><startdate>20180518</startdate><enddate>20180518</enddate><creator>Wei, Yunfeng</creator><creator>Chen, Caisheng</creator><creator>Yang, Hongwei</creator><creator>Song, Hongxue</creator><general>Springer International Publishing</general><general>Hindawi Limited</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5756-198X</orcidid></search><sort><creationdate>20180518</creationdate><title>Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions</title><author>Wei, Yunfeng ; Chen, Caisheng ; Yang, Hongwei ; Song, Hongxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-e93dc11ef0f17fe5ee7b265c593d25b3123e12665d7b595ba877b4caca17ec2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Approximations and Expansions</topic><topic>Difference and Functional Equations</topic><topic>Fractional p-Kirchhoff system</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mountain pass theorem</topic><topic>Multiplicity</topic><topic>Nehari manifold</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Sign-changing weight functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yunfeng</creatorcontrib><creatorcontrib>Chen, Caisheng</creatorcontrib><creatorcontrib>Yang, Hongwei</creatorcontrib><creatorcontrib>Song, Hongxue</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Boundary value problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yunfeng</au><au>Chen, Caisheng</au><au>Yang, Hongwei</au><au>Song, Hongxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions</atitle><jtitle>Boundary value problems</jtitle><stitle>Bound Value Probl</stitle><date>2018-05-18</date><risdate>2018</risdate><volume>2018</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>78</artnum><issn>1687-2770</issn><issn>1687-2762</issn><eissn>1687-2770</eissn><abstract><![CDATA[In this paper, we investigate the fractional p -Kirchhoff -type system: { M ( ∫ R 2 N | u ( x ) − u ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s u = μ g ( x ) | u | β − 2 u + a a + b h ( x ) | u | a − 2 u | v | b , in  Ω , M ( ∫ R 2 N | v ( x ) − v ( y ) | p | x − y | N + p s d x d y ) ( − Δ ) p s v = σ f ( x ) | v | β − 2 v + b a + b h ( x ) | v | b − 2 v | u | a , in  Ω , u = v = 0 , in  R N ∖ Ω , where Ω ⊂ R N is a smooth bounded domain, ( − Δ ) p s is the fractional p -Laplacian operator with 0 < s < 1 < p and p s < N . a > 1 , b > 1 satisfy 2 < a + b < p s ∗ . 1 < β < p s ∗ , p s ∗ = N p N − p s is the fractional critical exponent. μ , σ are two real parameters. M ( t ) = k + λ t τ , k > 0 , λ , τ ≥ 0 , τ = 0 if and only if λ = 0 . The weight functions g , f , h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2 < a + b < p ≤ p ( τ + 1 ) < β < p s ∗ and ( μ , σ ) belongs to a certain subset of R 2 . Also, by using the mountain pass theorem, we prove that there exist λ 1 ≥ λ 0 such that the system admits at least a nontrivial solution for λ ∈ ( 0 , λ 0 ) and no nontrivial solution for λ > λ 1 under the assumptions μ = σ = 0 and p < a + b < min { p ( τ + 1 ) , p s ∗ } .]]></abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13661-018-0998-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5756-198X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-2770
ispartof Boundary value problems, 2018-05, Vol.2018 (1), p.1-18, Article 78
issn 1687-2770
1687-2762
1687-2770
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_36eba1a99100482c883f4181f837a7ed
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Analysis
Approximations and Expansions
Difference and Functional Equations
Fractional p-Kirchhoff system
Mathematics
Mathematics and Statistics
Mountain pass theorem
Multiplicity
Nehari manifold
Ordinary Differential Equations
Partial Differential Equations
Sign-changing weight functions
title Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicity%20of%20solutions%20for%20a%20class%20of%20fractional%20p-Kirchhoff%20system%20with%20sign-changing%20weight%20functions&rft.jtitle=Boundary%20value%20problems&rft.au=Wei,%20Yunfeng&rft.date=2018-05-18&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=78&rft.issn=1687-2770&rft.eissn=1687-2770&rft_id=info:doi/10.1186/s13661-018-0998-7&rft_dat=%3Cproquest_doaj_%3E2041127050%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-e93dc11ef0f17fe5ee7b265c593d25b3123e12665d7b595ba877b4caca17ec2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2041127050&rft_id=info:pmid/&rfr_iscdi=true