Loading…
Novelty detection in an auditory oddball task on freely moving rats
The relative importance or saliency of sensory inputs depend on the animal’s environmental context and the behavioural responses to these same inputs can vary over time. Here we show how freely moving rats, trained to discriminate between deviant tones embedded in a regular pattern of repeating stim...
Saved in:
Published in: | Communications biology 2023-10, Vol.6 (1), p.1063-1063, Article 1063 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The relative importance or saliency of sensory inputs depend on the animal’s environmental context and the behavioural responses to these same inputs can vary over time. Here we show how freely moving rats, trained to discriminate between deviant tones embedded in a regular pattern of repeating stimuli and different variations of the classic oddball paradigm, can detect deviant tones, and this discriminability resembles the properties that are typical of neuronal adaptation described in previous studies. Moreover, the auditory brainstem response (ABR) latency decreases after training, a finding consistent with the notion that animals develop a type of plasticity to auditory stimuli. Our study suggests the existence of a form of long-term memory that may modulate the level of neuronal adaptation according to its behavioural relevance, and sets the ground for future experiments that will help to disentangle the functional mechanisms that govern behavioural habituation and its relation to neuronal adaptation.
Rats can detect frequency deviant tones in a context-dependent manner, indicating a memory-based adaptation in auditory neurons that is shaped by stimuli saliency and behavioral relevance. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-023-05403-y |