Loading…
The Lattice Structures of Approximation Operators Based on L-Fuzzy Generalized Neighborhood Systems
Following the idea of L-fuzzy generalized neighborhood systems as introduced by Zhao et al., we will give the join-complete lattice structures of lower and upper approximation operators based on L-fuzzy generalized neighborhood systems. In particular, as special approximation operators based on L-fu...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Following the idea of L-fuzzy generalized neighborhood systems as introduced by Zhao et al., we will give the join-complete lattice structures of lower and upper approximation operators based on L-fuzzy generalized neighborhood systems. In particular, as special approximation operators based on L-fuzzy generalized neighborhood systems, we will give the complete lattice structures of lower and upper approximation operators based on L-fuzzy relations. Furthermore, if L satisfies the double negative law, then there exists an order isomorphic mapping between upper and lower approximation operators based on L-fuzzy generalized neighborhood systems; when L-fuzzy generalized neighborhood system is serial, reflexive, and transitive, there still exists an order isomorphic mapping between upper and lower approximation operators, respectively, and both lower and upper approximation operators based on L-fuzzy relations are complete lattice isomorphism. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2021/5523822 |