Loading…

Metal‐HisTag coordination for remote loading of very small quantities of biomacromolecules into PLGA microspheres

Challenges to discovery and preclinical development of long‐acting release systems for protein therapeutics include protein instability, use of organic solvents during encapsulation, specialized equipment and personnel, and high costs of proteins. We sought to overcome these issues by combining remo...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering & translational medicine 2022-05, Vol.7 (2), p.e10272-n/a
Main Authors: Albert, Jason, Chang, Rae Sung, Garcia, George A., Schwendeman, Steven P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Challenges to discovery and preclinical development of long‐acting release systems for protein therapeutics include protein instability, use of organic solvents during encapsulation, specialized equipment and personnel, and high costs of proteins. We sought to overcome these issues by combining remote‐loading self‐healing encapsulation with binding HisTag protein to transition metal ions. Porous, drug‐free self‐healing microspheres of copolymers of lactic and glycolic acids with high molecular weight dextran sulfate and immobilized divalent transition metal (M2+) ions were placed in the presence of proteins with or without HisTags to bind the protein in the pores of the polymer before healing the surface pores with modest temperature. Using human serum albumin, insulin‐like growth factor 1, and granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), encapsulated efficiencies of immunoreactive protein relative to nonencapsulation protein solutions increased from ~41%, ~23%, and ~9%, respectively, without Zn2+ and HisTags to ~100%, ~83%, and ~75% with Zn2+ and HisTags. These three proteins were continuously released in immunoreactive form over seven to ten weeks to 73%–100% complete release, and GM‐CSF showed bioactivity >95% relative to immunoreactive protein throughout the release interval. Increased encapsulation efficiencies were also found with other divalent transition metals ions (Co2+, Cu2+, Ni2+, and Zn2+), but not with Ca2+. Ethylenediaminetetraacetic acid was found to interfere with this process, reverting encapsulation efficiency back to Zn2+‐free levels. These results indicate that M2+‐immobilized self‐healing microspheres can be prepared for simple and efficient encapsulation by simple mixing in aqueous solutions. These formulations provide slow and continuous release of immunoreactive proteins of diverse types by using a amount of protein (e.g.,
ISSN:2380-6761
2380-6761
DOI:10.1002/btm2.10272