Loading…
Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions
In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme...
Saved in:
Published in: | Symmetry (Basel) 2022-08, Vol.14 (8), p.1720 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin boundary conditions are developed in this work. Six examples for testing the applicability and performance of the method are considered. Convergence analysis is provided, and it is consistent with the numerical results. The results are compared with the exact solutions and published results from other methods. The method produces highly accurate results, which are displayed in tables and graphs. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym14081720 |