Loading…
Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions
In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme...
Saved in:
Published in: | Symmetry (Basel) 2022-08, Vol.14 (8), p.1720 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3 |
container_end_page | |
container_issue | 8 |
container_start_page | 1720 |
container_title | Symmetry (Basel) |
container_volume | 14 |
creator | Malele, James Dlamini, Phumlani Simelane, Simphiwe |
description | In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin boundary conditions are developed in this work. Six examples for testing the applicability and performance of the method are considered. Convergence analysis is provided, and it is consistent with the numerical results. The results are compared with the exact solutions and published results from other methods. The method produces highly accurate results, which are displayed in tables and graphs. |
doi_str_mv | 10.3390/sym14081720 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_390c4aa2aae7438dac67d94e582d7460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_390c4aa2aae7438dac67d94e582d7460</doaj_id><sourcerecordid>2706282932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3</originalsourceid><addsrcrecordid>eNpNUctKxDAULaKgqCt_IOBSqmmStslSxycIiq9tuE1unQxtMyatMn9vdES9m_vgcO7hnCw7KOgx54qexFVfCCqLmtGNbIfRmudSKbH5b97O9mNc0FQlLUVFd7L3a_c671bk1JgpwIhk5vslmJFcusGl9dy1LQYcDJJHM8ceI2l9IE8fPr_3bhjJmZ8GC2FFXqCbkNwH33TYR_Lhxjl58I0b_iAzP1g3Oj_EvWyrhS7i_k_fzZ4vL55m1_nt3dXN7PQ2N7wSY16UUsmGc8kYbVEVhWqoUQ1aCaqyFZNYtAoqbkoooW5qRZElhG2aVpRCGr6b3ax5rYeFXgbXJx3ag9PfBx9eNYTRmQ51stAIAAaAteDSgqlqqwSWktk6eZW4Dtdcy-DfJoyjXvgpDEm-ZjVNYpjiLKGO1igTfIwB29-vBdVfOel_OfFP3JiGCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706282932</pqid></control><display><type>article</type><title>Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions</title><source>Publicly Available Content Database</source><creator>Malele, James ; Dlamini, Phumlani ; Simelane, Simphiwe</creator><creatorcontrib>Malele, James ; Dlamini, Phumlani ; Simelane, Simphiwe</creatorcontrib><description>In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin boundary conditions are developed in this work. Six examples for testing the applicability and performance of the method are considered. Convergence analysis is provided, and it is consistent with the numerical results. The results are compared with the exact solutions and published results from other methods. The method produces highly accurate results, which are displayed in tables and graphs.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14081720</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Approximation ; Boundary conditions ; Boundary value problems ; compact finite differences ; Exact solutions ; Finite difference method ; quasilinearization ; Robin boundary conditions</subject><ispartof>Symmetry (Basel), 2022-08, Vol.14 (8), p.1720</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3</citedby><cites>FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3</cites><orcidid>0000-0002-0067-2996 ; 0000-0002-5188-6214 ; 0000-0001-9261-308X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706282932/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706282932?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Malele, James</creatorcontrib><creatorcontrib>Dlamini, Phumlani</creatorcontrib><creatorcontrib>Simelane, Simphiwe</creatorcontrib><title>Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions</title><title>Symmetry (Basel)</title><description>In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin boundary conditions are developed in this work. Six examples for testing the applicability and performance of the method are considered. Convergence analysis is provided, and it is consistent with the numerical results. The results are compared with the exact solutions and published results from other methods. The method produces highly accurate results, which are displayed in tables and graphs.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>compact finite differences</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>quasilinearization</subject><subject>Robin boundary conditions</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKxDAULaKgqCt_IOBSqmmStslSxycIiq9tuE1unQxtMyatMn9vdES9m_vgcO7hnCw7KOgx54qexFVfCCqLmtGNbIfRmudSKbH5b97O9mNc0FQlLUVFd7L3a_c671bk1JgpwIhk5vslmJFcusGl9dy1LQYcDJJHM8ceI2l9IE8fPr_3bhjJmZ8GC2FFXqCbkNwH33TYR_Lhxjl58I0b_iAzP1g3Oj_EvWyrhS7i_k_fzZ4vL55m1_nt3dXN7PQ2N7wSY16UUsmGc8kYbVEVhWqoUQ1aCaqyFZNYtAoqbkoooW5qRZElhG2aVpRCGr6b3ax5rYeFXgbXJx3ag9PfBx9eNYTRmQ51stAIAAaAteDSgqlqqwSWktk6eZW4Dtdcy-DfJoyjXvgpDEm-ZjVNYpjiLKGO1igTfIwB29-vBdVfOel_OfFP3JiGCQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Malele, James</creator><creator>Dlamini, Phumlani</creator><creator>Simelane, Simphiwe</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0067-2996</orcidid><orcidid>https://orcid.org/0000-0002-5188-6214</orcidid><orcidid>https://orcid.org/0000-0001-9261-308X</orcidid></search><sort><creationdate>20220801</creationdate><title>Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions</title><author>Malele, James ; Dlamini, Phumlani ; Simelane, Simphiwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>compact finite differences</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>quasilinearization</topic><topic>Robin boundary conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malele, James</creatorcontrib><creatorcontrib>Dlamini, Phumlani</creatorcontrib><creatorcontrib>Simelane, Simphiwe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malele, James</au><au>Dlamini, Phumlani</au><au>Simelane, Simphiwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>1720</spage><pages>1720-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin boundary conditions are developed in this work. Six examples for testing the applicability and performance of the method are considered. Convergence analysis is provided, and it is consistent with the numerical results. The results are compared with the exact solutions and published results from other methods. The method produces highly accurate results, which are displayed in tables and graphs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14081720</doi><orcidid>https://orcid.org/0000-0002-0067-2996</orcidid><orcidid>https://orcid.org/0000-0002-5188-6214</orcidid><orcidid>https://orcid.org/0000-0001-9261-308X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2022-08, Vol.14 (8), p.1720 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_390c4aa2aae7438dac67d94e582d7460 |
source | Publicly Available Content Database |
subjects | Accuracy Approximation Boundary conditions Boundary value problems compact finite differences Exact solutions Finite difference method quasilinearization Robin boundary conditions |
title | Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Accurate%20Compact%20Finite%20Difference%20Schemes%20for%20Two-Point%20Boundary%20Value%20Problems%20with%20Robin%20Boundary%20Conditions&rft.jtitle=Symmetry%20(Basel)&rft.au=Malele,%20James&rft.date=2022-08-01&rft.volume=14&rft.issue=8&rft.spage=1720&rft.pages=1720-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14081720&rft_dat=%3Cproquest_doaj_%3E2706282932%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706282932&rft_id=info:pmid/&rfr_iscdi=true |