Loading…

Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions

In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2022-08, Vol.14 (8), p.1720
Main Authors: Malele, James, Dlamini, Phumlani, Simelane, Simphiwe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3
cites cdi_FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3
container_end_page
container_issue 8
container_start_page 1720
container_title Symmetry (Basel)
container_volume 14
creator Malele, James
Dlamini, Phumlani
Simelane, Simphiwe
description In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin boundary conditions are developed in this work. Six examples for testing the applicability and performance of the method are considered. Convergence analysis is provided, and it is consistent with the numerical results. The results are compared with the exact solutions and published results from other methods. The method produces highly accurate results, which are displayed in tables and graphs.
doi_str_mv 10.3390/sym14081720
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_390c4aa2aae7438dac67d94e582d7460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_390c4aa2aae7438dac67d94e582d7460</doaj_id><sourcerecordid>2706282932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3</originalsourceid><addsrcrecordid>eNpNUctKxDAULaKgqCt_IOBSqmmStslSxycIiq9tuE1unQxtMyatMn9vdES9m_vgcO7hnCw7KOgx54qexFVfCCqLmtGNbIfRmudSKbH5b97O9mNc0FQlLUVFd7L3a_c671bk1JgpwIhk5vslmJFcusGl9dy1LQYcDJJHM8ceI2l9IE8fPr_3bhjJmZ8GC2FFXqCbkNwH33TYR_Lhxjl58I0b_iAzP1g3Oj_EvWyrhS7i_k_fzZ4vL55m1_nt3dXN7PQ2N7wSY16UUsmGc8kYbVEVhWqoUQ1aCaqyFZNYtAoqbkoooW5qRZElhG2aVpRCGr6b3ax5rYeFXgbXJx3ag9PfBx9eNYTRmQ51stAIAAaAteDSgqlqqwSWktk6eZW4Dtdcy-DfJoyjXvgpDEm-ZjVNYpjiLKGO1igTfIwB29-vBdVfOel_OfFP3JiGCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706282932</pqid></control><display><type>article</type><title>Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions</title><source>Publicly Available Content Database</source><creator>Malele, James ; Dlamini, Phumlani ; Simelane, Simphiwe</creator><creatorcontrib>Malele, James ; Dlamini, Phumlani ; Simelane, Simphiwe</creatorcontrib><description>In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin boundary conditions are developed in this work. Six examples for testing the applicability and performance of the method are considered. Convergence analysis is provided, and it is consistent with the numerical results. The results are compared with the exact solutions and published results from other methods. The method produces highly accurate results, which are displayed in tables and graphs.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14081720</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Approximation ; Boundary conditions ; Boundary value problems ; compact finite differences ; Exact solutions ; Finite difference method ; quasilinearization ; Robin boundary conditions</subject><ispartof>Symmetry (Basel), 2022-08, Vol.14 (8), p.1720</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3</citedby><cites>FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3</cites><orcidid>0000-0002-0067-2996 ; 0000-0002-5188-6214 ; 0000-0001-9261-308X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706282932/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706282932?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Malele, James</creatorcontrib><creatorcontrib>Dlamini, Phumlani</creatorcontrib><creatorcontrib>Simelane, Simphiwe</creatorcontrib><title>Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions</title><title>Symmetry (Basel)</title><description>In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin boundary conditions are developed in this work. Six examples for testing the applicability and performance of the method are considered. Convergence analysis is provided, and it is consistent with the numerical results. The results are compared with the exact solutions and published results from other methods. The method produces highly accurate results, which are displayed in tables and graphs.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>compact finite differences</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>quasilinearization</subject><subject>Robin boundary conditions</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKxDAULaKgqCt_IOBSqmmStslSxycIiq9tuE1unQxtMyatMn9vdES9m_vgcO7hnCw7KOgx54qexFVfCCqLmtGNbIfRmudSKbH5b97O9mNc0FQlLUVFd7L3a_c671bk1JgpwIhk5vslmJFcusGl9dy1LQYcDJJHM8ceI2l9IE8fPr_3bhjJmZ8GC2FFXqCbkNwH33TYR_Lhxjl58I0b_iAzP1g3Oj_EvWyrhS7i_k_fzZ4vL55m1_nt3dXN7PQ2N7wSY16UUsmGc8kYbVEVhWqoUQ1aCaqyFZNYtAoqbkoooW5qRZElhG2aVpRCGr6b3ax5rYeFXgbXJx3ag9PfBx9eNYTRmQ51stAIAAaAteDSgqlqqwSWktk6eZW4Dtdcy-DfJoyjXvgpDEm-ZjVNYpjiLKGO1igTfIwB29-vBdVfOel_OfFP3JiGCQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Malele, James</creator><creator>Dlamini, Phumlani</creator><creator>Simelane, Simphiwe</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0067-2996</orcidid><orcidid>https://orcid.org/0000-0002-5188-6214</orcidid><orcidid>https://orcid.org/0000-0001-9261-308X</orcidid></search><sort><creationdate>20220801</creationdate><title>Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions</title><author>Malele, James ; Dlamini, Phumlani ; Simelane, Simphiwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>compact finite differences</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>quasilinearization</topic><topic>Robin boundary conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malele, James</creatorcontrib><creatorcontrib>Dlamini, Phumlani</creatorcontrib><creatorcontrib>Simelane, Simphiwe</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malele, James</au><au>Dlamini, Phumlani</au><au>Simelane, Simphiwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>1720</spage><pages>1720-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>In this study, a high-order compact finite difference method is used to solve boundary value problems with Robin boundary conditions. The norm is to use a first-order finite difference scheme to approximate Neumann and Robin boundary conditions, but that compromises the accuracy of the entire scheme. As a result, new higher-order finite difference schemes for approximating Robin boundary conditions are developed in this work. Six examples for testing the applicability and performance of the method are considered. Convergence analysis is provided, and it is consistent with the numerical results. The results are compared with the exact solutions and published results from other methods. The method produces highly accurate results, which are displayed in tables and graphs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14081720</doi><orcidid>https://orcid.org/0000-0002-0067-2996</orcidid><orcidid>https://orcid.org/0000-0002-5188-6214</orcidid><orcidid>https://orcid.org/0000-0001-9261-308X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2022-08, Vol.14 (8), p.1720
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_390c4aa2aae7438dac67d94e582d7460
source Publicly Available Content Database
subjects Accuracy
Approximation
Boundary conditions
Boundary value problems
compact finite differences
Exact solutions
Finite difference method
quasilinearization
Robin boundary conditions
title Highly Accurate Compact Finite Difference Schemes for Two-Point Boundary Value Problems with Robin Boundary Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Accurate%20Compact%20Finite%20Difference%20Schemes%20for%20Two-Point%20Boundary%20Value%20Problems%20with%20Robin%20Boundary%20Conditions&rft.jtitle=Symmetry%20(Basel)&rft.au=Malele,%20James&rft.date=2022-08-01&rft.volume=14&rft.issue=8&rft.spage=1720&rft.pages=1720-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14081720&rft_dat=%3Cproquest_doaj_%3E2706282932%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-15898b338220fe9119b0c9bed8a96d628e1f9a63c5a5a7b790e2b0cdbbf4548c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706282932&rft_id=info:pmid/&rfr_iscdi=true