Loading…

Time-frequency super-resolution with superlets

Due to the Heisenberg–Gabor uncertainty principle, finite oscillation transients are difficult to localize simultaneously in both time and frequency. Classical estimators, like the short-time Fourier transform or the continuous-wavelet transform optimize either temporal or frequency resolution, or f...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-01, Vol.12 (1), p.337-337, Article 337
Main Authors: Moca, Vasile V., Bârzan, Harald, Nagy-Dăbâcan, Adriana, Mureșan, Raul C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the Heisenberg–Gabor uncertainty principle, finite oscillation transients are difficult to localize simultaneously in both time and frequency. Classical estimators, like the short-time Fourier transform or the continuous-wavelet transform optimize either temporal or frequency resolution, or find a suboptimal tradeoff. Here, we introduce a spectral estimator enabling time-frequency super-resolution, called superlet, that uses sets of wavelets with increasingly constrained bandwidth. These are combined geometrically in order to maintain the good temporal resolution of single wavelets and gain frequency resolution in upper bands. The normalization of wavelets in the set facilitates exploration of data with scale-free, fractal nature, containing oscillation packets that are self-similar across frequencies. Superlets perform well on synthetic data and brain signals recorded in humans and rodents, resolving high frequency bursts with excellent precision. Importantly, they can reveal fast transient oscillation events in single trials that may be hidden in the averaged time-frequency spectrum by other methods. Identifying the frequency, temporal location, duration, and amplitude of finite oscillation packets in neurophysiological signals with high precision is challenging. The authors present a method based on multiple wavelets to improve the detection of localized time-frequency packets.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20539-9