Loading…

Correct path to use flumes in water resources management

The hydraulic characteristics of the flow are measured using tools such as flumes, in the design and evaluation of furrow irrigation systems. Proper use of these tools, such as their immersion while working, is one of the important executive points in this field; in this study, trapezoidal flumes ar...

Full description

Saved in:
Bibliographic Details
Published in:Applied water science 2022-08, Vol.12 (8), p.1-9, Article 187
Main Authors: Vanani, Hamid Raeisi, Ostad-Ali-Askari, Kaveh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hydraulic characteristics of the flow are measured using tools such as flumes, in the design and evaluation of furrow irrigation systems. Proper use of these tools, such as their immersion while working, is one of the important executive points in this field; in this study, trapezoidal flumes are used to measure the intensity of input and output flow in furrow irrigation. The proper method of installing these flumes was investigated in this article. For this purpose, during 60 irrigation operations, the results showed that in order to create free flow conditions in these flumes, and not to affect the downstream and upstream current, as well as increasing the accuracy of measurements, in addition to installing flumes in all directions, trapezoidal flume should be installed at a height of at least about 4 cm above the furrow bed; according to the irrigation operations, the percentage of immersion in the installation of the flume at a height of 4 cm from the furrow bed was observed as standard (less than 70% immersion) in order to reduce the percentage of flow measurement error in different depths of water entering the flume. The results also showed that for ensuring free flow in trapezoidal flumes, the flume should be installed at a height of 4 cm or more above the furrow bed, provided the input ridges are strengthened and the end flume is measured to measure the inflow to the furrow. The output current of the furrow should be installed in the floor of the furrow along the bed to prevent the passage of current, provided that after the outflow flume, the furrow bed should be deeper in terms of free flow. Observance of the points and results obtained in this study in furrow irrigation systems prevents errors in flow measurement and consequently increases the accuracy in the design and evaluation of furrow irrigation systems.
ISSN:2190-5487
2190-5495
DOI:10.1007/s13201-022-01702-7