Loading…

Photoperiod-Dependent Nutrient Accumulation in Rice Cultivated in Plant Factories: A Comparative Metabolomic Analysis

Plant factories offer a promising solution to some of the challenges facing traditional agriculture, allowing for year-round rapid production of plant-derived foods. However, the effects of conditions in plant factories on metabolic nutrients remain to be explored. In this study, we used three rice...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2024-05, Vol.13 (10), p.1544
Main Authors: Yu, Jingyao, Yang, Yu, Luo, Lanjun, Feng, Fang, Saeed, Sana, Luo, Jie, Fang, Chuanying, Zhou, Junjie, Li, Kang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant factories offer a promising solution to some of the challenges facing traditional agriculture, allowing for year-round rapid production of plant-derived foods. However, the effects of conditions in plant factories on metabolic nutrients remain to be explored. In this study, we used three rice accessions (KongYu131, HuangHuaZhan, and Kam Sweet Rice) as objectives, which were planted in a plant factory with strict photoperiods that are long-day (12 h light/12 h dark) or short-day (8 h light/16 h dark). A total of 438 metabolites were detected in the harvested rice grains. The difference in photoperiod leads to a different accumulation of metabolites in rice grains. Most metabolites accumulated significantly higher levels under the short-day condition than the long-day condition. Differentially accumulated metabolites were enriched in the amino acids and vitamin B6 pathway. Asparagine, pyridoxamine, and pyridoxine are key metabolites that accumulate at higher levels in rice grains harvested from the short-day photoperiod. This study reveals the photoperiod-dependent metabolomic differences in rice cultivated in plant factories, especially the metabolic profiling of taste- and nutrition-related compounds.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13101544