Loading…

Detection of premalignant bronchial lesions can be significantly improved by combination of advanced bronchoscopic imaging techniques

Background: The search for the most efficient bronchoscopic imaging tool in detection of early lung cancer is still active. The major aim of this study was to determine sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of each bronchoscopic technique and...

Full description

Saved in:
Bibliographic Details
Published in:Annals of thoracic medicine 2013-04, Vol.8 (2), p.93-98
Main Authors: Zaric, Bojan, Perin, Branislav, Stojsic, Vladimir, Carapic, Vladimir, Matijasevic, Jovan, Andrijevic, Ilija, Eri, Zivka
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: The search for the most efficient bronchoscopic imaging tool in detection of early lung cancer is still active. The major aim of this study was to determine sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of each bronchoscopic technique and their combination in detection of premalignant bronchial lesions. Methods: This was a prospective trial that enrolled 96 patients with indication for bronchoscopy. Lesions were classified as visually positive if pathological fluorescence was observed under autofluorescence imaging (AFI) videobronchoscopy or dotted, tortuous, and abrupt-ending blood vessels were identified under narrow band imaging (NBI) videobronchoscopy. Squamous metaplasia, mild, moderate, or severe dysplasia, and carcinoma in situ (CIS) were regarded as histologically positive lesions. Results: Sensitivity, specificity, PPV, and NPV of white light videobronchoscopy (WLB) in detection of premalignant lesions were 26.5%, 63.9%, 34.4%, and 54.9%, respectively; the corresponding values for AFI were 52%, 79.6%, 64.6%, and 69.9% respectively, for NBI were 66%, 84.6%, 75.4%, 77.7%, respectively, while the values for combination of NBI and AFI were 86.1%, 86.6%, 84.6%, and 88%, respectively. Combination of NBI and AFI significantly improves sensitivity when compared to each individual technique ( P < 0.001). When specificity is of concern, combination of techniques improves specificity of WLB ( P < 0.001) and specificity of AFI ( P = 0.03), but it does not have significant influence on specificity of NBI ( P = 0.53). Conclusion: Combination of NBI and AFI in detection of premalignant bronchial lesions increases both sensitivity and specificity of each technique. However, it seems that NBI is most sufficient and effective in detection of these lesions.
ISSN:1817-1737
1998-3557
DOI:10.4103/1817-1737.109820