Loading…

High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice

The mammalian gut harbors a complex and dynamic microbial ecosystem: the microbiota. While emerging studies support that microbiota regulates brain function with a few molecular cues suggested, the overall biochemical landscape of the “microbiota-gut-brain axis” remains largely unclear. Here we use...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-10, Vol.12 (1), p.6000-6000, Article 6000
Main Authors: Lai, Yunjia, Liu, Chih-Wei, Yang, Yifei, Hsiao, Yun-Chung, Ru, Hongyu, Lu, Kun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mammalian gut harbors a complex and dynamic microbial ecosystem: the microbiota. While emerging studies support that microbiota regulates brain function with a few molecular cues suggested, the overall biochemical landscape of the “microbiota-gut-brain axis” remains largely unclear. Here we use high-coverage metabolomics to comparatively profile feces, blood sera, and cerebral cortical brain tissues of germ-free C57BL/6 mice and their age-matched conventionally raised counterparts. Results revealed for all three matrices metabolomic signatures owing to microbiota, yielding hundreds of identified metabolites including 533 altered for feces, 231 for sera, and 58 for brain with numerous significantly enriched pathways involving aromatic amino acids and neurotransmitters. Multicompartmental comparative analyses single out microbiota-derived metabolites potentially implicated in interorgan transport and the gut-brain axis, as exemplified by indoxyl sulfate and trimethylamine- N -oxide. Gender-specific characteristics of these landscapes are discussed. Our findings may be valuable for future research probing microbial influences on host metabolism and gut-brain communication. The gut microbiota harbours neuroactive potential with links to neurological disorders. Here, the authors apply global metabolomics with an integrated annotation strategy to comparatively profile fecal, blood serum and cerebral cortical brain tissues of eight-week-old germ-free mice vs. age-matched specific-pathogen-free mice, providing a snapshot of the metabolome status linked to the gut-brain axis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-26209-8