Loading…
A combined compact difference scheme for option pricing in the exponential jump-diffusion models
In the present paper, starting with the Black–Scholes equations, whose solutions are the values of European options, we describe the exponential jump-diffusion model of Levy process type. Here, a jump-diffusion model for a single-asset market is considered. Under this assumption the value of a Europ...
Saved in:
Published in: | Advances in difference equations 2019-12, Vol.2019 (1), p.1-13, Article 495 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present paper, starting with the Black–Scholes equations, whose solutions are the values of European options, we describe the exponential jump-diffusion model of Levy process type. Here, a jump-diffusion model for a single-asset market is considered. Under this assumption the value of a European contingency claim satisfies a general “partial integro-differential equation” (PIDE). With a combined compact difference (CCD) scheme for the spatial discretization, a high-order method is proposed for solving exponential jump-diffusion models. The method is sixth-order accurate in space and second-order accurate in time. A known analytical solution to the model is used to evaluate the performance of the numerical scheme. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-019-2431-7 |