Loading…
Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor
Pedestrian dead reckoning (PDR) is a self-contained positioning technology and has been a significant research topic in recent years. Pedestrian-stride-length estimation is the core part of the PDR system and directly affects the performance of the PDR. The current stride-length-estimation method is...
Saved in:
Published in: | Micromachines (Basel) 2023-05, Vol.14 (6), p.1170 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c512t-c9cc352f4a915bb7fb6ee7c7cc590feb4032c88d3d5747e5da3f64549e738e203 |
---|---|
cites | cdi_FETCH-LOGICAL-c512t-c9cc352f4a915bb7fb6ee7c7cc590feb4032c88d3d5747e5da3f64549e738e203 |
container_end_page | |
container_issue | 6 |
container_start_page | 1170 |
container_title | Micromachines (Basel) |
container_volume | 14 |
creator | Li, Yong Zeng, Guopei Wang, Luping Tan, Ke |
description | Pedestrian dead reckoning (PDR) is a self-contained positioning technology and has been a significant research topic in recent years. Pedestrian-stride-length estimation is the core part of the PDR system and directly affects the performance of the PDR. The current stride-length-estimation method is difficult to adapt to changes in pedestrian walking speed, which leads to a rapid increase in the error of the PDR. In this paper, a new deep-learning model based on long short-term memory (LSTM) and Transformer, LT-StrideNet, is proposed to estimate pedestrian-stride length. Next, a shank-mounted PDR framework is built based on the proposed stride-length-estimation method. In the PDR framework, the detection of pedestrian stride is achieved by peak detection with a dynamic threshold. An extended Kalman filter (EKF) model is adopted to fuse the gyroscope, accelerometer, and magnetometer. The experimental results show that the proposed stride-length-estimation method can effectively adapt to changes in pedestrian walking speed, and our PDR framework has excellent positioning performance. |
doi_str_mv | 10.3390/mi14061170 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3c346b321a9348c8b04802079c9c9edc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A758396452</galeid><doaj_id>oai_doaj_org_article_3c346b321a9348c8b04802079c9c9edc</doaj_id><sourcerecordid>A758396452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-c9cc352f4a915bb7fb6ee7c7cc590feb4032c88d3d5747e5da3f64549e738e203</originalsourceid><addsrcrecordid>eNpdUm1r1TAULqK4MffFHyAFv4jQmTZJ03ySu7np4PqCdwO_hTQ97c1dm8wkFfbvPbNzbiaQHJ4858l5y7KXJTmiVJJ3ky0ZqctSkCfZfkVEVdR1_ePpA3svO4xxR3AJIfF4nu1RQQUTnO9nYWXMHHSCfJOC7aBYgxvSNj-NyU46We_yYx2hy9FYXxQL6QukvPch_wYdRES0yz-A7vLvYK68s27IL-PtqfPNVrur4rOfXUKNDbjow4vsWa_HCId390F2eXZ6cfKpWH_9eH6yWheGl1UqjDSG8qpnWpa8bUXf1gDCCGO4JD20jNDKNE1HO465AO807WvGmQRBG6gIPcjOF93O6526DphPuFFeW_UH8GFQOiRrRlDUUFa3tCq1pKwxTUtYQ7CAEoOQ0BnUer9oXc_thAC4FPT4SPTxi7NbNfhfqiSUYH8oKry5Uwj-54xlU5ONBsZRO_BzVFVDSV2zkgukvv6PuvNzcFgrZFWywe5RhqyjhTVozMC63uPHBncHkzXeQW8RXwneUIl1qdDh7eJggo8xQH8ffknU7Sypf7OE5FcPE76n_p0c-huhK8N4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829837334</pqid></control><display><type>article</type><title>Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><creator>Li, Yong ; Zeng, Guopei ; Wang, Luping ; Tan, Ke</creator><creatorcontrib>Li, Yong ; Zeng, Guopei ; Wang, Luping ; Tan, Ke</creatorcontrib><description>Pedestrian dead reckoning (PDR) is a self-contained positioning technology and has been a significant research topic in recent years. Pedestrian-stride-length estimation is the core part of the PDR system and directly affects the performance of the PDR. The current stride-length-estimation method is difficult to adapt to changes in pedestrian walking speed, which leads to a rapid increase in the error of the PDR. In this paper, a new deep-learning model based on long short-term memory (LSTM) and Transformer, LT-StrideNet, is proposed to estimate pedestrian-stride length. Next, a shank-mounted PDR framework is built based on the proposed stride-length-estimation method. In the PDR framework, the detection of pedestrian stride is achieved by peak detection with a dynamic threshold. An extended Kalman filter (EKF) model is adopted to fuse the gyroscope, accelerometer, and magnetometer. The experimental results show that the proposed stride-length-estimation method can effectively adapt to changes in pedestrian walking speed, and our PDR framework has excellent positioning performance.</description><identifier>ISSN: 2072-666X</identifier><identifier>EISSN: 2072-666X</identifier><identifier>DOI: 10.3390/mi14061170</identifier><identifier>PMID: 37374755</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accelerometers ; Accuracy ; Algorithms ; Calibration ; Dead reckoning ; Dead reckoning (Navigation) ; Deep learning ; Extended Kalman filter ; inertial measurement unit (IMU) ; Kalman filter ; Location-based systems ; Methods ; Microelectromechanical systems ; Natural language processing ; Neural networks ; pedestrian dead reckoning ; Pedestrians ; Sensors ; stride-length estimation ; Transformer model ; Velocity ; Walking</subject><ispartof>Micromachines (Basel), 2023-05, Vol.14 (6), p.1170</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-c9cc352f4a915bb7fb6ee7c7cc590feb4032c88d3d5747e5da3f64549e738e203</citedby><cites>FETCH-LOGICAL-c512t-c9cc352f4a915bb7fb6ee7c7cc590feb4032c88d3d5747e5da3f64549e738e203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2829837334/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2829837334?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37374755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Zeng, Guopei</creatorcontrib><creatorcontrib>Wang, Luping</creatorcontrib><creatorcontrib>Tan, Ke</creatorcontrib><title>Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor</title><title>Micromachines (Basel)</title><addtitle>Micromachines (Basel)</addtitle><description>Pedestrian dead reckoning (PDR) is a self-contained positioning technology and has been a significant research topic in recent years. Pedestrian-stride-length estimation is the core part of the PDR system and directly affects the performance of the PDR. The current stride-length-estimation method is difficult to adapt to changes in pedestrian walking speed, which leads to a rapid increase in the error of the PDR. In this paper, a new deep-learning model based on long short-term memory (LSTM) and Transformer, LT-StrideNet, is proposed to estimate pedestrian-stride length. Next, a shank-mounted PDR framework is built based on the proposed stride-length-estimation method. In the PDR framework, the detection of pedestrian stride is achieved by peak detection with a dynamic threshold. An extended Kalman filter (EKF) model is adopted to fuse the gyroscope, accelerometer, and magnetometer. The experimental results show that the proposed stride-length-estimation method can effectively adapt to changes in pedestrian walking speed, and our PDR framework has excellent positioning performance.</description><subject>Accelerometers</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Dead reckoning</subject><subject>Dead reckoning (Navigation)</subject><subject>Deep learning</subject><subject>Extended Kalman filter</subject><subject>inertial measurement unit (IMU)</subject><subject>Kalman filter</subject><subject>Location-based systems</subject><subject>Methods</subject><subject>Microelectromechanical systems</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>pedestrian dead reckoning</subject><subject>Pedestrians</subject><subject>Sensors</subject><subject>stride-length estimation</subject><subject>Transformer model</subject><subject>Velocity</subject><subject>Walking</subject><issn>2072-666X</issn><issn>2072-666X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUm1r1TAULqK4MffFHyAFv4jQmTZJ03ySu7np4PqCdwO_hTQ97c1dm8wkFfbvPbNzbiaQHJ4858l5y7KXJTmiVJJ3ky0ZqctSkCfZfkVEVdR1_ePpA3svO4xxR3AJIfF4nu1RQQUTnO9nYWXMHHSCfJOC7aBYgxvSNj-NyU46We_yYx2hy9FYXxQL6QukvPch_wYdRES0yz-A7vLvYK68s27IL-PtqfPNVrur4rOfXUKNDbjow4vsWa_HCId390F2eXZ6cfKpWH_9eH6yWheGl1UqjDSG8qpnWpa8bUXf1gDCCGO4JD20jNDKNE1HO465AO807WvGmQRBG6gIPcjOF93O6526DphPuFFeW_UH8GFQOiRrRlDUUFa3tCq1pKwxTUtYQ7CAEoOQ0BnUer9oXc_thAC4FPT4SPTxi7NbNfhfqiSUYH8oKry5Uwj-54xlU5ONBsZRO_BzVFVDSV2zkgukvv6PuvNzcFgrZFWywe5RhqyjhTVozMC63uPHBncHkzXeQW8RXwneUIl1qdDh7eJggo8xQH8ffknU7Sypf7OE5FcPE76n_p0c-huhK8N4</recordid><startdate>20230531</startdate><enddate>20230531</enddate><creator>Li, Yong</creator><creator>Zeng, Guopei</creator><creator>Wang, Luping</creator><creator>Tan, Ke</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230531</creationdate><title>Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor</title><author>Li, Yong ; Zeng, Guopei ; Wang, Luping ; Tan, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-c9cc352f4a915bb7fb6ee7c7cc590feb4032c88d3d5747e5da3f64549e738e203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accelerometers</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Dead reckoning</topic><topic>Dead reckoning (Navigation)</topic><topic>Deep learning</topic><topic>Extended Kalman filter</topic><topic>inertial measurement unit (IMU)</topic><topic>Kalman filter</topic><topic>Location-based systems</topic><topic>Methods</topic><topic>Microelectromechanical systems</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>pedestrian dead reckoning</topic><topic>Pedestrians</topic><topic>Sensors</topic><topic>stride-length estimation</topic><topic>Transformer model</topic><topic>Velocity</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>Zeng, Guopei</creatorcontrib><creatorcontrib>Wang, Luping</creatorcontrib><creatorcontrib>Tan, Ke</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Micromachines (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yong</au><au>Zeng, Guopei</au><au>Wang, Luping</au><au>Tan, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor</atitle><jtitle>Micromachines (Basel)</jtitle><addtitle>Micromachines (Basel)</addtitle><date>2023-05-31</date><risdate>2023</risdate><volume>14</volume><issue>6</issue><spage>1170</spage><pages>1170-</pages><issn>2072-666X</issn><eissn>2072-666X</eissn><abstract>Pedestrian dead reckoning (PDR) is a self-contained positioning technology and has been a significant research topic in recent years. Pedestrian-stride-length estimation is the core part of the PDR system and directly affects the performance of the PDR. The current stride-length-estimation method is difficult to adapt to changes in pedestrian walking speed, which leads to a rapid increase in the error of the PDR. In this paper, a new deep-learning model based on long short-term memory (LSTM) and Transformer, LT-StrideNet, is proposed to estimate pedestrian-stride length. Next, a shank-mounted PDR framework is built based on the proposed stride-length-estimation method. In the PDR framework, the detection of pedestrian stride is achieved by peak detection with a dynamic threshold. An extended Kalman filter (EKF) model is adopted to fuse the gyroscope, accelerometer, and magnetometer. The experimental results show that the proposed stride-length-estimation method can effectively adapt to changes in pedestrian walking speed, and our PDR framework has excellent positioning performance.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37374755</pmid><doi>10.3390/mi14061170</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-666X |
ispartof | Micromachines (Basel), 2023-05, Vol.14 (6), p.1170 |
issn | 2072-666X 2072-666X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3c346b321a9348c8b04802079c9c9edc |
source | Publicly Available Content Database; PubMed Central(OpenAccess) |
subjects | Accelerometers Accuracy Algorithms Calibration Dead reckoning Dead reckoning (Navigation) Deep learning Extended Kalman filter inertial measurement unit (IMU) Kalman filter Location-based systems Methods Microelectromechanical systems Natural language processing Neural networks pedestrian dead reckoning Pedestrians Sensors stride-length estimation Transformer model Velocity Walking |
title | Accurate Stride-Length Estimation Based on LT-StrideNet for Pedestrian Dead Reckoning Using a Shank-Mounted Sensor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Stride-Length%20Estimation%20Based%20on%20LT-StrideNet%20for%20Pedestrian%20Dead%20Reckoning%20Using%20a%20Shank-Mounted%20Sensor&rft.jtitle=Micromachines%20(Basel)&rft.au=Li,%20Yong&rft.date=2023-05-31&rft.volume=14&rft.issue=6&rft.spage=1170&rft.pages=1170-&rft.issn=2072-666X&rft.eissn=2072-666X&rft_id=info:doi/10.3390/mi14061170&rft_dat=%3Cgale_doaj_%3EA758396452%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-c9cc352f4a915bb7fb6ee7c7cc590feb4032c88d3d5747e5da3f64549e738e203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2829837334&rft_id=info:pmid/37374755&rft_galeid=A758396452&rfr_iscdi=true |