Loading…
Parallel Subgradient-like Extragradient Approaches for Variational Inequality and Fixed-Point Problems with Bregman Relatively Asymptotical Nonexpansivity
In a uniformly smooth and p-uniformly convex Banach space, let the pair of variational inequality and fixed-point problems (VIFPPs) consist of two variational inequality problems (VIPs) involving two uniformly continuous and pseudomonotone mappings and two fixed-point problems implicating two unifor...
Saved in:
Published in: | Symmetry (Basel) 2023-09, Vol.15 (9), p.1749 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a uniformly smooth and p-uniformly convex Banach space, let the pair of variational inequality and fixed-point problems (VIFPPs) consist of two variational inequality problems (VIPs) involving two uniformly continuous and pseudomonotone mappings and two fixed-point problems implicating two uniformly continuous and Bregman relatively asymptotically nonexpansive mappings. This article designs two parallel subgradient-like extragradient algorithms with an inertial effect for solving this pair of VIFPPs, where each algorithm consists of two parts which are of a mutually symmetric structure. With the help of suitable registrations, it is proven that the sequences generated by the suggested algorithms converge weakly and strongly to a solution of this pair of VIFPPs, respectively. Lastly, an illustrative instance is presented to verify the implementability and applicability of the suggested approaches. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym15091749 |