Loading…
Development and Verification of a ROS-based Multi-DOF Flight Test System for Unmanned Aerial Vehicles
Unmanned aerial vehicles (UAVs) are used in many research fields for diverse operations, requiring the system to be safe and efficient. Therefore, the UAV system's robustness and integrity are paramount in its design and operation. For these design and operational requirements, we propose a rob...
Saved in:
Published in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unmanned aerial vehicles (UAVs) are used in many research fields for diverse operations, requiring the system to be safe and efficient. Therefore, the UAV system's robustness and integrity are paramount in its design and operation. For these design and operational requirements, we propose a robot operating system (ROS) based multi-degree of freedom (DOF) flight test framework for the safe development, verification, and validation of UAVs. The developed flight test system includes a test bench capable of moving freely in 4 DOF, an electronic control unit (ECU) for collecting data from sensors and running the operation software, a power supply unit (PSU) to power up each device, an operation software tools developed in ROS for seamless integration of the software and hardware systems, and a wind tunnel for simulating the flight environment. The fidelity of the flight test framework was verified through experimental tests conducted on a rocket-propelled foldable unmanned aerial vehicle under development. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3267128 |