Loading…

Fusion of Multi-Layer Attention Mechanisms and CNN-LSTM for Fault Prediction in Marine Diesel Engines

Timely and effective maintenance is imperative to minimize operational disruptions and ensure the reliability of marine vessels. However, given the low early warning rates and poor adaptability under complex conditions of previous data-driven fault prediction methods, this paper presents a hybrid de...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering 2024-06, Vol.12 (6), p.990
Main Authors: Sun, Jiawen, Ren, Hongxiang, Duan, Yating, Yang, Xiao, Wang, Delong, Tang, Haina
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Timely and effective maintenance is imperative to minimize operational disruptions and ensure the reliability of marine vessels. However, given the low early warning rates and poor adaptability under complex conditions of previous data-driven fault prediction methods, this paper presents a hybrid deep learning model based on multi-layer attention mechanisms for predicting faults in a marine diesel engine. Specifically, this hybrid model first introduces a Convolutional Neural Network (CNN) and self-attention to extract local features from multi-feature input sequences. Then, we utilize Long Short-Term Memory (LSTM) and multi-head attention to capture global correlations across time steps. Finally, the hybrid deep learning model is integrated with the Exponential Weighted Moving Average (EWMA) to monitor the operational status and predict potential faults in the marine diesel engine. We conducted extensive evaluations using real datasets under three operating conditions. The experimental results indicate that the proposed method outperforms the current state-of-the-art methods. Moreover, ablation studies and visualizations highlight the importance of fusing multi-layer attention, and the results under various operating conditions and application scenarios demonstrate that this method possesses predictive accuracy and broad applicability. Hence, this approach can provide decision support for condition monitoring and predictive maintenance of marine mechanical systems.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse12060990