Loading…
Sentinel-2 Cloud Removal Considering Ground Changes by Fusing Multitemporal SAR and Optical Images
Publicly available optical remote sensing images from platforms such as Sentinel-2 satellites contribute much to the Earth observation and research tasks. However, information loss caused by clouds largely decreases the availability of usable optical images so reconstructing the missing information...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-10, Vol.13 (19), p.3998 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Publicly available optical remote sensing images from platforms such as Sentinel-2 satellites contribute much to the Earth observation and research tasks. However, information loss caused by clouds largely decreases the availability of usable optical images so reconstructing the missing information is important. Existing reconstruction methods can hardly reflect the real-time information because they mainly make use of multitemporal optical images as reference. To capture the real-time information in the cloud removal process, Synthetic Aperture Radar (SAR) images can serve as the reference images due to the cloud penetrability of SAR imaging. Nevertheless, large datasets are necessary because existing SAR-based cloud removal methods depend on network training. In this paper, we integrate the merits of multitemporal optical images and SAR images to the cloud removal process, the results of which can reflect the ground information change, in a simple convolution neural network. Although the proposed method is based on deep neural network, it can directly operate on the target image without training datasets. We conduct several simulation and real data experiments of cloud removal in Sentinel-2 images with multitemporal Sentinel-1 SAR images and Sentinel-2 optical images. Experiment results show that the proposed method outperforms those state-of-the-art multitemporal-based methods and overcomes the constraint of datasets of those SAR-based methods. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs13193998 |