Loading…

Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples

Background: Immune cell infiltration in tumor is an emerging prognostic biomarker in breast cancer. The gold standard for quantification of immune cells in tissue sections is visual assessment through a microscope, which is subjective and semi-quantitative. In this study, we propose and evaluate an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pathology informatics 2016-01, Vol.7 (1), p.38-38, Article 38
Main Authors: Turkki, Riku, Linder, Nina, Kovanen, Panu E., Pellinen, Teijo, Lundin, Johan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Immune cell infiltration in tumor is an emerging prognostic biomarker in breast cancer. The gold standard for quantification of immune cells in tissue sections is visual assessment through a microscope, which is subjective and semi-quantitative. In this study, we propose and evaluate an approach based on antibody-guided annotation and deep learning to quantify immune cell-rich areas in hematoxylin and eosin (H&E) stained samples. Methods: Consecutive sections of formalin-fixed parafin-embedded samples obtained from the primary tumor of twenty breast cancer patients were cut and stained with H&E and the pan-leukocyte CD45 antibody. The stained slides were digitally scanned, and a training set of immune cell-rich and cell-poor tissue regions was annotated in H&E whole-slide images using the CD45-expression as a guide. In analysis, the images were divided into small homogenous regions, superpixels, from which features were extracted using a pretrained convolutional neural network (CNN) and classified with a support of vector machine. The CNN approach was compared to texture-based classification and to visual assessments performed by two pathologists. Results: In a set of 123,442 labeled superpixels, the CNN approach achieved an F-score of 0.94 (range: 0.92–0.94) in discrimination of immune cell-rich and cell-poor regions, as compared to an F-score of 0.88 (range: 0.87–0.89) obtained with the texture-based classification. When compared to visual assessment of 200 images, an agreement of 90% (κ = 0.79) to quantify immune infiltration with the CNN approach was achieved while the inter-observer agreement between pathologists was 90% (κ = 0.78). Conclusions: Our findings indicate that deep learning can be applied to quantify immune cell infiltration in breast cancer samples using a basic morphology staining only. A good discrimination of immune cell-rich areas was achieved, well in concordance with both leukocyte antigen expression and pathologists’ visual assessment.
ISSN:2153-3539
2229-5089
2153-3539
DOI:10.4103/2153-3539.189703