Loading…

Deep learning for mango leaf disease identification: A vision transformer perspective

Over the last decade, the use of machine learning in smart agriculture has surged in popularity. Deep learning, particularly Convolutional Neural Networks (CNNs), has been useful in identifying diseases in plants at an early stage. Recently, Vision Transformers (ViTs) have proven to be effective in...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-09, Vol.10 (17), p.e36361, Article e36361
Main Authors: Hossain, Md. Arban, Sakib, Saadman, Abdullah, Hasan Muhammad, Arman, Shifat E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over the last decade, the use of machine learning in smart agriculture has surged in popularity. Deep learning, particularly Convolutional Neural Networks (CNNs), has been useful in identifying diseases in plants at an early stage. Recently, Vision Transformers (ViTs) have proven to be effective in image classification tasks. These architectures often outperform most state-of-the-art CNN models. However, the adoption of vision transformers in agriculture is still in its infancy. In this paper, we evaluated the performance of vision transformers in identification of mango leaf diseases and compare them with popular CNNs. We proposed an optimized model based on a pretrained Data-efficient Image Transformer (DeiT) architecture that achieves 99.75% accuracy, better than many popular CNNs including SqueezeNet, ShuffleNet, EfficientNet, DenseNet121, and MobileNet. We also demonstrated that vision transformers can have a shorter training time than CNNs, as they require fewer epochs to achieve optimal results. We also proposed a mobile app that uses the model as a backend to identify mango leaf diseases in real-time.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e36361