Loading…
Reduce aviation’s greenhouse gas emissions through immediately feasible and affordable gate electrification
Aircraft at airport gates require power and air conditioning, provided by fossil fuel-combusting equipment, to maintain functionality and thermal comfort. We estimate the life-cycle greenhouse gas (GHG) emissions and economic implications from electrifying gate operations for 2354 commercial-traffic...
Saved in:
Published in: | Environmental research letters 2021-05, Vol.16 (5), p.54039 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aircraft at airport gates require power and air conditioning, provided by fossil fuel-combusting equipment, to maintain functionality and thermal comfort. We estimate the life-cycle greenhouse gas (GHG) emissions and economic implications from electrifying gate operations for 2354 commercial-traffic airports in the world. Here we show that complete electrification could yield GHG reductions of 63%–97% per gate operation relative to current practice, with greater reductions correlated with low-carbon electricity. Economic payback periods average just 1–2 years. Shifting to complete gate electrification could save a high-traffic airport an average of $5–6 million in annual climate economic damages relative to estimates of current practice. 10–12 million metric tons of annual GHG emissions are potentially saved if most airports in the world electrified gate operations, costing the 24 busiest global airports on average $25–30, U.S. airports $60–70, and non-U.S. airports $80–90 per metric ton of CO
2
mitigated, in some cases comparable to carbon-market prices. Environmental benefits depend primarily upon electricity sources and operational parameters such as aircraft fleet composition. |
---|---|
ISSN: | 1748-9326 1748-9326 |
DOI: | 10.1088/1748-9326/abf7f1 |