Loading…
Cognitive Similarity-Based Collaborative Filtering Recommendation System
This paper provides a new approach that improves collaborative filtering results in recommendation systems. In particular, we aim to ensure the reliability of the data set collected which is to collect the cognition about the item similarity from the users. Hence, in this work, we collect the cognit...
Saved in:
Published in: | Applied sciences 2020-06, Vol.10 (12), p.4183 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper provides a new approach that improves collaborative filtering results in recommendation systems. In particular, we aim to ensure the reliability of the data set collected which is to collect the cognition about the item similarity from the users. Hence, in this work, we collect the cognitive similarity of the user about similar movies. Besides, we introduce a three-layered architecture that consists of the network between the items (item layer), the network between the cognitive similarity of users (cognition layer) and the network between users occurring in their cognitive similarity (user layer). For instance, the similarity in the cognitive network can be extracted from a similarity measure on the item network. In order to evaluate our method, we conducted experiments in the movie domain. In addition, for better performance evaluation, we use the F-measure that is a combination of two criteria P r e c i s i o n and R e c a l l . Compared with the Pearson Correlation, our method more accurate and achieves improvement over the baseline 11.1% in the best case. The result shows that our method achieved consistent improvement of 1.8% to 3.2% for various neighborhood sizes in MAE calculation, and from 2.0% to 4.1% in RMSE calculation. This indicates that our method improves recommendation performance. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10124183 |