Loading…

Multiplex epigenome editing of ion channel expression in nociceptive neurons abolished degenerative IVD‐conditioned media‐induced mechanical sensitivity

Background Low back pain is a major contributor to disability worldwide and generates a tremendous socioeconomic impact. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to discogenic pain by sensitizing nociceptive neurons innervating the disc to stimuli that is nonpai...

Full description

Saved in:
Bibliographic Details
Published in:JOR-spine 2023-06, Vol.6 (2), p.e1253-n/a
Main Authors: Stover, Joshua D., Trone, Matthew A., Lawrence, Brandon, Bowles, Robby D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Low back pain is a major contributor to disability worldwide and generates a tremendous socioeconomic impact. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to discogenic pain by sensitizing nociceptive neurons innervating the disc to stimuli that is nonpainful in healthy patients. Previously, we demonstrated the ability of degenerative IVDs to sensitize neurons to mechanical stimuli; however, elucidation of degenerative IVDs discogenic pain mechanisms is required to develop therapeutic strategies that directly target these mechanisms. Aims In this study, we utilized CRISPR epigenome editing of nociceptive neurons to identify mechanisms of degenerative IVD‐induced changes to mechanical nociception and demonstrated the ability of multiplex CRISPR epigenome editing of nociceptive neurons to modulate inflammation‐induced mechanical nociception. Methods and Results Utilizing an in vitro model, we demonstrated degenerative IVD‐produced IL‐6‐induced increases in nociceptive neuron activity in response to mechanical stimuli, mediated by TRPA1, ASIC3, and Piezo2 ion channel activity. Once these ion channels were identified as mediators of degenerative IVD‐induced mechanical nociception, we developed singleplex and multiplex CRISPR epigenome editing vectors that modulate endogenous expression of TRPA1, ASIC3, and Piezo2 via targeted gene promoter histone methylation. When delivered to nociceptive neurons, the multiplex CRISPR epigenome editing vectors abolished degenerative IVD‐induced mechanical nociception while preserving nonpathologic neuron activity. Conclusion This work demonstrates the potential of multiplex CRISPR epigenome editing as a highly targeted gene‐based neuromodulation strategy for the treatment of discogenic pain, specifically; and, for the treatment of inflammatory chronic pain conditions, more broadly. Multiplex CRISPR epigenome editing of ion channel expression in nociceptive neurons abolished degenerative IVD‐induced mechanical nociception in an in vitro model of discogenic back pain. These results demonstrate multiplex epigenome editing of nociceptive neurons as a potential neuromodulation strategy for discogenic back pain and other chronic pain conditions.
ISSN:2572-1143
2572-1143
DOI:10.1002/jsp2.1253