Loading…

Drone Insights: Unveiling Beach Usage through AI-Powered People Counting

Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered...

Full description

Saved in:
Bibliographic Details
Published in:Drones (Basel) 2024-10, Vol.8 (10), p.579
Main Authors: Herrera, César, Connolly, Rod M., Rasmussen, Jasmine A., McNamara, Gerrard, Murray, Thomas P., Lopez-Marcano, Sebastian, Moore, Matthew, Campbell, Max D., Alvarez, Fernando
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63
container_end_page
container_issue 10
container_start_page 579
container_title Drones (Basel)
container_volume 8
creator Herrera, César
Connolly, Rod M.
Rasmussen, Jasmine A.
McNamara, Gerrard
Murray, Thomas P.
Lopez-Marcano, Sebastian
Moore, Matthew
Campbell, Max D.
Alvarez, Fernando
description Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered 30 km of coastline, accounting for different seasons, times of day, and environmental conditions. Two AI models were employed: one for counting people on land and in water (91–95% accuracy), and another for identifying usage types (85–92% accuracy). Using drone data, we estimated annual beach usage at 34 million people in 2022/23, with 55% on land and 45% in water—approximately double the most recent estimate from lifeguard counts, which are spatially limited and prone to human error. When applying similar restrictions as lifeguard surveys, drone data estimated 15 million visits, aligning closely with lifeguard counts (within 9%). Temporal (time of day, day of the week, season) and spatial (beach location) factors were the strongest predictors of beach usage, with additional patterns explained by weather variables. Our method, combining drones with AI, enhances the coverage, accuracy, and granularity of beach monitoring, offering a scalable, cost-effective solution for long-term usage assessment.
doi_str_mv 10.3390/drones8100579
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_418da1771aa941689e7c1646c2ceaabd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814366112</galeid><doaj_id>oai_doaj_org_article_418da1771aa941689e7c1646c2ceaabd</doaj_id><sourcerecordid>A814366112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63</originalsourceid><addsrcrecordid>eNpVUU1LxDAULKKgqEfvBc_VfLRJ421dvxYEPbjgLbwmL90sa7MmXcV_b3RFlHd4j2FmGN4UxQklZ5wrcm5jGDC1lJBGqp3igDWkrupaPO_-ufeL45SWhBDG6kYoelDcXX3pytmQfL8Y00U5H97Qr_zQl5cIZlHOE_RYjosYNv2inMyqx_COEW35iGG9wnIaNsOY6UfFnoNVwuOffVjMb66fpnfV_cPtbDq5rwwXzVi1lhsp0UnoZGOFANcSwW3bOCQo89k1aAAkCqUow04hsdIR1zHG0aLgh8Vs62sDLPU6-heIHzqA199AiL2GOHqzQl3T1gKVkgKomopWoTRU1MIwgwCdzV6nW691DK8bTKNehk0ccnzNKcthOOMqs862rB6yqR9cGCOYPBZfvMnfcz7jk5bWXAhKWRZUW4GJIaWI7jcmJfqrLP2vLP4JbaqHlw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120633239</pqid></control><display><type>article</type><title>Drone Insights: Unveiling Beach Usage through AI-Powered People Counting</title><source>ProQuest Publicly Available Content Database</source><creator>Herrera, César ; Connolly, Rod M. ; Rasmussen, Jasmine A. ; McNamara, Gerrard ; Murray, Thomas P. ; Lopez-Marcano, Sebastian ; Moore, Matthew ; Campbell, Max D. ; Alvarez, Fernando</creator><creatorcontrib>Herrera, César ; Connolly, Rod M. ; Rasmussen, Jasmine A. ; McNamara, Gerrard ; Murray, Thomas P. ; Lopez-Marcano, Sebastian ; Moore, Matthew ; Campbell, Max D. ; Alvarez, Fernando</creatorcontrib><description>Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered 30 km of coastline, accounting for different seasons, times of day, and environmental conditions. Two AI models were employed: one for counting people on land and in water (91–95% accuracy), and another for identifying usage types (85–92% accuracy). Using drone data, we estimated annual beach usage at 34 million people in 2022/23, with 55% on land and 45% in water—approximately double the most recent estimate from lifeguard counts, which are spatially limited and prone to human error. When applying similar restrictions as lifeguard surveys, drone data estimated 15 million visits, aligning closely with lifeguard counts (within 9%). Temporal (time of day, day of the week, season) and spatial (beach location) factors were the strongest predictors of beach usage, with additional patterns explained by weather variables. Our method, combining drones with AI, enhances the coverage, accuracy, and granularity of beach monitoring, offering a scalable, cost-effective solution for long-term usage assessment.</description><identifier>ISSN: 2504-446X</identifier><identifier>EISSN: 2504-446X</identifier><identifier>DOI: 10.3390/drones8100579</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; artificial intelligence ; Automation ; Aviation ; Beaches ; coastal management ; Coasts ; Computer vision ; Counting ; Datasets ; Deep learning ; Environmental conditions ; Human error ; infrastructure usage ; Lifeguards ; ocean beaches ; Public safety ; Surfing ; Time of use ; Tourism ; Use statistics</subject><ispartof>Drones (Basel), 2024-10, Vol.8 (10), p.579</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63</cites><orcidid>0000-0001-6223-1291 ; 0000-0003-0307-6724 ; 0009-0009-1329-6967 ; 0000-0001-6071-2139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120633239/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120633239?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Herrera, César</creatorcontrib><creatorcontrib>Connolly, Rod M.</creatorcontrib><creatorcontrib>Rasmussen, Jasmine A.</creatorcontrib><creatorcontrib>McNamara, Gerrard</creatorcontrib><creatorcontrib>Murray, Thomas P.</creatorcontrib><creatorcontrib>Lopez-Marcano, Sebastian</creatorcontrib><creatorcontrib>Moore, Matthew</creatorcontrib><creatorcontrib>Campbell, Max D.</creatorcontrib><creatorcontrib>Alvarez, Fernando</creatorcontrib><title>Drone Insights: Unveiling Beach Usage through AI-Powered People Counting</title><title>Drones (Basel)</title><description>Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered 30 km of coastline, accounting for different seasons, times of day, and environmental conditions. Two AI models were employed: one for counting people on land and in water (91–95% accuracy), and another for identifying usage types (85–92% accuracy). Using drone data, we estimated annual beach usage at 34 million people in 2022/23, with 55% on land and 45% in water—approximately double the most recent estimate from lifeguard counts, which are spatially limited and prone to human error. When applying similar restrictions as lifeguard surveys, drone data estimated 15 million visits, aligning closely with lifeguard counts (within 9%). Temporal (time of day, day of the week, season) and spatial (beach location) factors were the strongest predictors of beach usage, with additional patterns explained by weather variables. Our method, combining drones with AI, enhances the coverage, accuracy, and granularity of beach monitoring, offering a scalable, cost-effective solution for long-term usage assessment.</description><subject>Accuracy</subject><subject>artificial intelligence</subject><subject>Automation</subject><subject>Aviation</subject><subject>Beaches</subject><subject>coastal management</subject><subject>Coasts</subject><subject>Computer vision</subject><subject>Counting</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Environmental conditions</subject><subject>Human error</subject><subject>infrastructure usage</subject><subject>Lifeguards</subject><subject>ocean beaches</subject><subject>Public safety</subject><subject>Surfing</subject><subject>Time of use</subject><subject>Tourism</subject><subject>Use statistics</subject><issn>2504-446X</issn><issn>2504-446X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1LxDAULKKgqEfvBc_VfLRJ421dvxYEPbjgLbwmL90sa7MmXcV_b3RFlHd4j2FmGN4UxQklZ5wrcm5jGDC1lJBGqp3igDWkrupaPO_-ufeL45SWhBDG6kYoelDcXX3pytmQfL8Y00U5H97Qr_zQl5cIZlHOE_RYjosYNv2inMyqx_COEW35iGG9wnIaNsOY6UfFnoNVwuOffVjMb66fpnfV_cPtbDq5rwwXzVi1lhsp0UnoZGOFANcSwW3bOCQo89k1aAAkCqUow04hsdIR1zHG0aLgh8Vs62sDLPU6-heIHzqA199AiL2GOHqzQl3T1gKVkgKomopWoTRU1MIwgwCdzV6nW691DK8bTKNehk0ccnzNKcthOOMqs862rB6yqR9cGCOYPBZfvMnfcz7jk5bWXAhKWRZUW4GJIaWI7jcmJfqrLP2vLP4JbaqHlw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Herrera, César</creator><creator>Connolly, Rod M.</creator><creator>Rasmussen, Jasmine A.</creator><creator>McNamara, Gerrard</creator><creator>Murray, Thomas P.</creator><creator>Lopez-Marcano, Sebastian</creator><creator>Moore, Matthew</creator><creator>Campbell, Max D.</creator><creator>Alvarez, Fernando</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6223-1291</orcidid><orcidid>https://orcid.org/0000-0003-0307-6724</orcidid><orcidid>https://orcid.org/0009-0009-1329-6967</orcidid><orcidid>https://orcid.org/0000-0001-6071-2139</orcidid></search><sort><creationdate>20241001</creationdate><title>Drone Insights: Unveiling Beach Usage through AI-Powered People Counting</title><author>Herrera, César ; Connolly, Rod M. ; Rasmussen, Jasmine A. ; McNamara, Gerrard ; Murray, Thomas P. ; Lopez-Marcano, Sebastian ; Moore, Matthew ; Campbell, Max D. ; Alvarez, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>artificial intelligence</topic><topic>Automation</topic><topic>Aviation</topic><topic>Beaches</topic><topic>coastal management</topic><topic>Coasts</topic><topic>Computer vision</topic><topic>Counting</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Environmental conditions</topic><topic>Human error</topic><topic>infrastructure usage</topic><topic>Lifeguards</topic><topic>ocean beaches</topic><topic>Public safety</topic><topic>Surfing</topic><topic>Time of use</topic><topic>Tourism</topic><topic>Use statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera, César</creatorcontrib><creatorcontrib>Connolly, Rod M.</creatorcontrib><creatorcontrib>Rasmussen, Jasmine A.</creatorcontrib><creatorcontrib>McNamara, Gerrard</creatorcontrib><creatorcontrib>Murray, Thomas P.</creatorcontrib><creatorcontrib>Lopez-Marcano, Sebastian</creatorcontrib><creatorcontrib>Moore, Matthew</creatorcontrib><creatorcontrib>Campbell, Max D.</creatorcontrib><creatorcontrib>Alvarez, Fernando</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Drones (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera, César</au><au>Connolly, Rod M.</au><au>Rasmussen, Jasmine A.</au><au>McNamara, Gerrard</au><au>Murray, Thomas P.</au><au>Lopez-Marcano, Sebastian</au><au>Moore, Matthew</au><au>Campbell, Max D.</au><au>Alvarez, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drone Insights: Unveiling Beach Usage through AI-Powered People Counting</atitle><jtitle>Drones (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><spage>579</spage><pages>579-</pages><issn>2504-446X</issn><eissn>2504-446X</eissn><abstract>Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered 30 km of coastline, accounting for different seasons, times of day, and environmental conditions. Two AI models were employed: one for counting people on land and in water (91–95% accuracy), and another for identifying usage types (85–92% accuracy). Using drone data, we estimated annual beach usage at 34 million people in 2022/23, with 55% on land and 45% in water—approximately double the most recent estimate from lifeguard counts, which are spatially limited and prone to human error. When applying similar restrictions as lifeguard surveys, drone data estimated 15 million visits, aligning closely with lifeguard counts (within 9%). Temporal (time of day, day of the week, season) and spatial (beach location) factors were the strongest predictors of beach usage, with additional patterns explained by weather variables. Our method, combining drones with AI, enhances the coverage, accuracy, and granularity of beach monitoring, offering a scalable, cost-effective solution for long-term usage assessment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/drones8100579</doi><orcidid>https://orcid.org/0000-0001-6223-1291</orcidid><orcidid>https://orcid.org/0000-0003-0307-6724</orcidid><orcidid>https://orcid.org/0009-0009-1329-6967</orcidid><orcidid>https://orcid.org/0000-0001-6071-2139</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-446X
ispartof Drones (Basel), 2024-10, Vol.8 (10), p.579
issn 2504-446X
2504-446X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_418da1771aa941689e7c1646c2ceaabd
source ProQuest Publicly Available Content Database
subjects Accuracy
artificial intelligence
Automation
Aviation
Beaches
coastal management
Coasts
Computer vision
Counting
Datasets
Deep learning
Environmental conditions
Human error
infrastructure usage
Lifeguards
ocean beaches
Public safety
Surfing
Time of use
Tourism
Use statistics
title Drone Insights: Unveiling Beach Usage through AI-Powered People Counting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T07%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drone%20Insights:%20Unveiling%20Beach%20Usage%20through%20AI-Powered%20People%20Counting&rft.jtitle=Drones%20(Basel)&rft.au=Herrera,%20C%C3%A9sar&rft.date=2024-10-01&rft.volume=8&rft.issue=10&rft.spage=579&rft.pages=579-&rft.issn=2504-446X&rft.eissn=2504-446X&rft_id=info:doi/10.3390/drones8100579&rft_dat=%3Cgale_doaj_%3EA814366112%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120633239&rft_id=info:pmid/&rft_galeid=A814366112&rfr_iscdi=true