Loading…
Drone Insights: Unveiling Beach Usage through AI-Powered People Counting
Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered...
Saved in:
Published in: | Drones (Basel) 2024-10, Vol.8 (10), p.579 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63 |
container_end_page | |
container_issue | 10 |
container_start_page | 579 |
container_title | Drones (Basel) |
container_volume | 8 |
creator | Herrera, César Connolly, Rod M. Rasmussen, Jasmine A. McNamara, Gerrard Murray, Thomas P. Lopez-Marcano, Sebastian Moore, Matthew Campbell, Max D. Alvarez, Fernando |
description | Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered 30 km of coastline, accounting for different seasons, times of day, and environmental conditions. Two AI models were employed: one for counting people on land and in water (91–95% accuracy), and another for identifying usage types (85–92% accuracy). Using drone data, we estimated annual beach usage at 34 million people in 2022/23, with 55% on land and 45% in water—approximately double the most recent estimate from lifeguard counts, which are spatially limited and prone to human error. When applying similar restrictions as lifeguard surveys, drone data estimated 15 million visits, aligning closely with lifeguard counts (within 9%). Temporal (time of day, day of the week, season) and spatial (beach location) factors were the strongest predictors of beach usage, with additional patterns explained by weather variables. Our method, combining drones with AI, enhances the coverage, accuracy, and granularity of beach monitoring, offering a scalable, cost-effective solution for long-term usage assessment. |
doi_str_mv | 10.3390/drones8100579 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_418da1771aa941689e7c1646c2ceaabd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814366112</galeid><doaj_id>oai_doaj_org_article_418da1771aa941689e7c1646c2ceaabd</doaj_id><sourcerecordid>A814366112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63</originalsourceid><addsrcrecordid>eNpVUU1LxDAULKKgqEfvBc_VfLRJ421dvxYEPbjgLbwmL90sa7MmXcV_b3RFlHd4j2FmGN4UxQklZ5wrcm5jGDC1lJBGqp3igDWkrupaPO_-ufeL45SWhBDG6kYoelDcXX3pytmQfL8Y00U5H97Qr_zQl5cIZlHOE_RYjosYNv2inMyqx_COEW35iGG9wnIaNsOY6UfFnoNVwuOffVjMb66fpnfV_cPtbDq5rwwXzVi1lhsp0UnoZGOFANcSwW3bOCQo89k1aAAkCqUow04hsdIR1zHG0aLgh8Vs62sDLPU6-heIHzqA199AiL2GOHqzQl3T1gKVkgKomopWoTRU1MIwgwCdzV6nW691DK8bTKNehk0ccnzNKcthOOMqs862rB6yqR9cGCOYPBZfvMnfcz7jk5bWXAhKWRZUW4GJIaWI7jcmJfqrLP2vLP4JbaqHlw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120633239</pqid></control><display><type>article</type><title>Drone Insights: Unveiling Beach Usage through AI-Powered People Counting</title><source>ProQuest Publicly Available Content Database</source><creator>Herrera, César ; Connolly, Rod M. ; Rasmussen, Jasmine A. ; McNamara, Gerrard ; Murray, Thomas P. ; Lopez-Marcano, Sebastian ; Moore, Matthew ; Campbell, Max D. ; Alvarez, Fernando</creator><creatorcontrib>Herrera, César ; Connolly, Rod M. ; Rasmussen, Jasmine A. ; McNamara, Gerrard ; Murray, Thomas P. ; Lopez-Marcano, Sebastian ; Moore, Matthew ; Campbell, Max D. ; Alvarez, Fernando</creatorcontrib><description>Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered 30 km of coastline, accounting for different seasons, times of day, and environmental conditions. Two AI models were employed: one for counting people on land and in water (91–95% accuracy), and another for identifying usage types (85–92% accuracy). Using drone data, we estimated annual beach usage at 34 million people in 2022/23, with 55% on land and 45% in water—approximately double the most recent estimate from lifeguard counts, which are spatially limited and prone to human error. When applying similar restrictions as lifeguard surveys, drone data estimated 15 million visits, aligning closely with lifeguard counts (within 9%). Temporal (time of day, day of the week, season) and spatial (beach location) factors were the strongest predictors of beach usage, with additional patterns explained by weather variables. Our method, combining drones with AI, enhances the coverage, accuracy, and granularity of beach monitoring, offering a scalable, cost-effective solution for long-term usage assessment.</description><identifier>ISSN: 2504-446X</identifier><identifier>EISSN: 2504-446X</identifier><identifier>DOI: 10.3390/drones8100579</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; artificial intelligence ; Automation ; Aviation ; Beaches ; coastal management ; Coasts ; Computer vision ; Counting ; Datasets ; Deep learning ; Environmental conditions ; Human error ; infrastructure usage ; Lifeguards ; ocean beaches ; Public safety ; Surfing ; Time of use ; Tourism ; Use statistics</subject><ispartof>Drones (Basel), 2024-10, Vol.8 (10), p.579</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63</cites><orcidid>0000-0001-6223-1291 ; 0000-0003-0307-6724 ; 0009-0009-1329-6967 ; 0000-0001-6071-2139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120633239/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120633239?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Herrera, César</creatorcontrib><creatorcontrib>Connolly, Rod M.</creatorcontrib><creatorcontrib>Rasmussen, Jasmine A.</creatorcontrib><creatorcontrib>McNamara, Gerrard</creatorcontrib><creatorcontrib>Murray, Thomas P.</creatorcontrib><creatorcontrib>Lopez-Marcano, Sebastian</creatorcontrib><creatorcontrib>Moore, Matthew</creatorcontrib><creatorcontrib>Campbell, Max D.</creatorcontrib><creatorcontrib>Alvarez, Fernando</creatorcontrib><title>Drone Insights: Unveiling Beach Usage through AI-Powered People Counting</title><title>Drones (Basel)</title><description>Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered 30 km of coastline, accounting for different seasons, times of day, and environmental conditions. Two AI models were employed: one for counting people on land and in water (91–95% accuracy), and another for identifying usage types (85–92% accuracy). Using drone data, we estimated annual beach usage at 34 million people in 2022/23, with 55% on land and 45% in water—approximately double the most recent estimate from lifeguard counts, which are spatially limited and prone to human error. When applying similar restrictions as lifeguard surveys, drone data estimated 15 million visits, aligning closely with lifeguard counts (within 9%). Temporal (time of day, day of the week, season) and spatial (beach location) factors were the strongest predictors of beach usage, with additional patterns explained by weather variables. Our method, combining drones with AI, enhances the coverage, accuracy, and granularity of beach monitoring, offering a scalable, cost-effective solution for long-term usage assessment.</description><subject>Accuracy</subject><subject>artificial intelligence</subject><subject>Automation</subject><subject>Aviation</subject><subject>Beaches</subject><subject>coastal management</subject><subject>Coasts</subject><subject>Computer vision</subject><subject>Counting</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Environmental conditions</subject><subject>Human error</subject><subject>infrastructure usage</subject><subject>Lifeguards</subject><subject>ocean beaches</subject><subject>Public safety</subject><subject>Surfing</subject><subject>Time of use</subject><subject>Tourism</subject><subject>Use statistics</subject><issn>2504-446X</issn><issn>2504-446X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1LxDAULKKgqEfvBc_VfLRJ421dvxYEPbjgLbwmL90sa7MmXcV_b3RFlHd4j2FmGN4UxQklZ5wrcm5jGDC1lJBGqp3igDWkrupaPO_-ufeL45SWhBDG6kYoelDcXX3pytmQfL8Y00U5H97Qr_zQl5cIZlHOE_RYjosYNv2inMyqx_COEW35iGG9wnIaNsOY6UfFnoNVwuOffVjMb66fpnfV_cPtbDq5rwwXzVi1lhsp0UnoZGOFANcSwW3bOCQo89k1aAAkCqUow04hsdIR1zHG0aLgh8Vs62sDLPU6-heIHzqA199AiL2GOHqzQl3T1gKVkgKomopWoTRU1MIwgwCdzV6nW691DK8bTKNehk0ccnzNKcthOOMqs862rB6yqR9cGCOYPBZfvMnfcz7jk5bWXAhKWRZUW4GJIaWI7jcmJfqrLP2vLP4JbaqHlw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Herrera, César</creator><creator>Connolly, Rod M.</creator><creator>Rasmussen, Jasmine A.</creator><creator>McNamara, Gerrard</creator><creator>Murray, Thomas P.</creator><creator>Lopez-Marcano, Sebastian</creator><creator>Moore, Matthew</creator><creator>Campbell, Max D.</creator><creator>Alvarez, Fernando</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6223-1291</orcidid><orcidid>https://orcid.org/0000-0003-0307-6724</orcidid><orcidid>https://orcid.org/0009-0009-1329-6967</orcidid><orcidid>https://orcid.org/0000-0001-6071-2139</orcidid></search><sort><creationdate>20241001</creationdate><title>Drone Insights: Unveiling Beach Usage through AI-Powered People Counting</title><author>Herrera, César ; Connolly, Rod M. ; Rasmussen, Jasmine A. ; McNamara, Gerrard ; Murray, Thomas P. ; Lopez-Marcano, Sebastian ; Moore, Matthew ; Campbell, Max D. ; Alvarez, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>artificial intelligence</topic><topic>Automation</topic><topic>Aviation</topic><topic>Beaches</topic><topic>coastal management</topic><topic>Coasts</topic><topic>Computer vision</topic><topic>Counting</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Environmental conditions</topic><topic>Human error</topic><topic>infrastructure usage</topic><topic>Lifeguards</topic><topic>ocean beaches</topic><topic>Public safety</topic><topic>Surfing</topic><topic>Time of use</topic><topic>Tourism</topic><topic>Use statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera, César</creatorcontrib><creatorcontrib>Connolly, Rod M.</creatorcontrib><creatorcontrib>Rasmussen, Jasmine A.</creatorcontrib><creatorcontrib>McNamara, Gerrard</creatorcontrib><creatorcontrib>Murray, Thomas P.</creatorcontrib><creatorcontrib>Lopez-Marcano, Sebastian</creatorcontrib><creatorcontrib>Moore, Matthew</creatorcontrib><creatorcontrib>Campbell, Max D.</creatorcontrib><creatorcontrib>Alvarez, Fernando</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Drones (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera, César</au><au>Connolly, Rod M.</au><au>Rasmussen, Jasmine A.</au><au>McNamara, Gerrard</au><au>Murray, Thomas P.</au><au>Lopez-Marcano, Sebastian</au><au>Moore, Matthew</au><au>Campbell, Max D.</au><au>Alvarez, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drone Insights: Unveiling Beach Usage through AI-Powered People Counting</atitle><jtitle>Drones (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><spage>579</spage><pages>579-</pages><issn>2504-446X</issn><eissn>2504-446X</eissn><abstract>Ocean beaches are a major recreational attraction in many coastal cities, requiring accurate visitor counts for infrastructure planning and value estimation. We developed a novel method to assess beach usage on the Gold Coast, Australia, using 507 drone surveys across 24 beaches. The surveys covered 30 km of coastline, accounting for different seasons, times of day, and environmental conditions. Two AI models were employed: one for counting people on land and in water (91–95% accuracy), and another for identifying usage types (85–92% accuracy). Using drone data, we estimated annual beach usage at 34 million people in 2022/23, with 55% on land and 45% in water—approximately double the most recent estimate from lifeguard counts, which are spatially limited and prone to human error. When applying similar restrictions as lifeguard surveys, drone data estimated 15 million visits, aligning closely with lifeguard counts (within 9%). Temporal (time of day, day of the week, season) and spatial (beach location) factors were the strongest predictors of beach usage, with additional patterns explained by weather variables. Our method, combining drones with AI, enhances the coverage, accuracy, and granularity of beach monitoring, offering a scalable, cost-effective solution for long-term usage assessment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/drones8100579</doi><orcidid>https://orcid.org/0000-0001-6223-1291</orcidid><orcidid>https://orcid.org/0000-0003-0307-6724</orcidid><orcidid>https://orcid.org/0009-0009-1329-6967</orcidid><orcidid>https://orcid.org/0000-0001-6071-2139</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-446X |
ispartof | Drones (Basel), 2024-10, Vol.8 (10), p.579 |
issn | 2504-446X 2504-446X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_418da1771aa941689e7c1646c2ceaabd |
source | ProQuest Publicly Available Content Database |
subjects | Accuracy artificial intelligence Automation Aviation Beaches coastal management Coasts Computer vision Counting Datasets Deep learning Environmental conditions Human error infrastructure usage Lifeguards ocean beaches Public safety Surfing Time of use Tourism Use statistics |
title | Drone Insights: Unveiling Beach Usage through AI-Powered People Counting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T07%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drone%20Insights:%20Unveiling%20Beach%20Usage%20through%20AI-Powered%20People%20Counting&rft.jtitle=Drones%20(Basel)&rft.au=Herrera,%20C%C3%A9sar&rft.date=2024-10-01&rft.volume=8&rft.issue=10&rft.spage=579&rft.pages=579-&rft.issn=2504-446X&rft.eissn=2504-446X&rft_id=info:doi/10.3390/drones8100579&rft_dat=%3Cgale_doaj_%3EA814366112%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-8d3c77ef7ab75d66af8063d85fe0e7063b5ecaa7e69912eb9e0d7f0fb223ede63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120633239&rft_id=info:pmid/&rft_galeid=A814366112&rfr_iscdi=true |