Loading…

Neuronal population activity dynamics reveal a low-dimensional signature of operant learning in Aplysia

Learning engages a high-dimensional neuronal population space spanning multiple brain regions. However, it remains unknown whether it is possible to identify a low-dimensional signature associated with operant conditioning, a ubiquitous form of learning in which animals learn from the consequences o...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2022-01, Vol.5 (1), p.90-90, Article 90
Main Authors: Costa, Renan M., Baxter, Douglas A., Byrne, John H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Learning engages a high-dimensional neuronal population space spanning multiple brain regions. However, it remains unknown whether it is possible to identify a low-dimensional signature associated with operant conditioning, a ubiquitous form of learning in which animals learn from the consequences of behavior. Using single-neuron resolution voltage imaging, here we identify two low-dimensional motor modules in the neuronal population underlying Aplysia feeding. Our findings point to a temporal shift in module recruitment as the primary signature of operant learning. Our findings can help guide characterization of learning signatures in systems in which only a smaller fraction of the relevant neuronal population can be monitored. Costa et al. use single-neuron resolution voltage imaging to identify two low-dimensional motor modules in the neuronal population underlying Aplysia feeding. Their findings point to a temporal shift in module recruitment as the primary signature of operant learning.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-022-03044-1