Loading…
Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis
The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the g...
Saved in:
Published in: | Nature communications 2023-09, Vol.14 (1), p.5781-5781, Article 5781 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43 |
container_end_page | 5781 |
container_issue | 1 |
container_start_page | 5781 |
container_title | Nature communications |
container_volume | 14 |
creator | Huang, Ting Lin, Ruyi Su, Yuanqin Sun, Hao Zheng, Xixi Zhang, Jinsong Lu, Xiaoyan Zhao, Baiqin Jiang, Xinchi Huang, Lingling Li, Ni Shi, Jing Fan, Xiaohui Xu, Donghang Zhang, Tianyuan Gao, Jianqing |
description | The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention.
Using healthy mitochondria to restore impaired mitochondrial homeostasis is a promising therapy for pulmonary fibrosis. Here the authors use joint-engineered mesenchymal stem cells for efficient mitochondrial delivery to injured lung cells, showing a successful mitigation of the disease. |
doi_str_mv | 10.1038/s41467-023-41529-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_423879c2cadb442f91cd65e219d67582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_423879c2cadb442f91cd65e219d67582</doaj_id><sourcerecordid>2865943899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43</originalsourceid><addsrcrecordid>eNp9kk1vFSEUhonR2Kb2D7iaxI2bUT4HWBnTVG3SxI2uCQOHW25m4AozN-m_l95p1HYhLDg5vO8TPl6E3hL8gWCmPlZO-CB7TFnPiaC6ly_QOcWc9ERS9vKf-gxd1rrHbTBNFOev0RmTrU-YOEfzdQjRRUhLF9MC5diqmFMXcukO6zTnZMt9F-JYco21O0bbzXHJ7i4nX6KduqXYVAM0dclzXsB34_0zyRjzDhI0_xv0KtipwuXjeoF-frn-cfWtv_3-9ebq823vBFFLr5ngzgpQKjjlpOMKVKBUD1pqyuhIvbfQph3BazxyDjrowJzVTNvBcXaBbjauz3ZvDiXO7RYm22hOjVx2xpYlugkMp0xJ7aizvoFo0MT5QQAl2g9SKNpYnzbWYR1n8K49ULHTE-jTnRTvzC4fDcECS3wivH8klPxrhbqYOVYH02QT5LUaqoaBSc0G0qTvnkn3eS2pvdWDSmjOlNZNRTeVa79SC4Q_pyHYPKTDbOkwLR3mlA4jm4ltptrEaQflL_o_rt9etr7I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865943899</pqid></control><display><type>article</type><title>Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huang, Ting ; Lin, Ruyi ; Su, Yuanqin ; Sun, Hao ; Zheng, Xixi ; Zhang, Jinsong ; Lu, Xiaoyan ; Zhao, Baiqin ; Jiang, Xinchi ; Huang, Lingling ; Li, Ni ; Shi, Jing ; Fan, Xiaohui ; Xu, Donghang ; Zhang, Tianyuan ; Gao, Jianqing</creator><creatorcontrib>Huang, Ting ; Lin, Ruyi ; Su, Yuanqin ; Sun, Hao ; Zheng, Xixi ; Zhang, Jinsong ; Lu, Xiaoyan ; Zhao, Baiqin ; Jiang, Xinchi ; Huang, Lingling ; Li, Ni ; Shi, Jing ; Fan, Xiaohui ; Xu, Donghang ; Zhang, Tianyuan ; Gao, Jianqing</creatorcontrib><description>The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention.
Using healthy mitochondria to restore impaired mitochondrial homeostasis is a promising therapy for pulmonary fibrosis. Here the authors use joint-engineered mesenchymal stem cells for efficient mitochondrial delivery to injured lung cells, showing a successful mitigation of the disease.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41529-7</identifier><identifier>PMID: 37723135</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/109 ; 13/31 ; 13/51 ; 14/19 ; 14/28 ; 38/77 ; 38/91 ; 631/532/2074 ; 631/61/2296 ; 631/80/642/333 ; 639/166/985 ; 64/60 ; 96/34 ; Biosynthesis ; Disease control ; Fibrosis ; Homeostasis ; Humanities and Social Sciences ; Iron oxides ; Lung diseases ; Lungs ; Mesenchymal stem cells ; Mitochondria ; Mitophagy ; multidisciplinary ; Nanoparticles ; Pioglitazone ; Pulmonary fibrosis ; Science ; Science (multidisciplinary) ; Stem cells ; Therapeutic applications</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5781-5781, Article 5781</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43</citedby><cites>FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43</cites><orcidid>0000-0002-8887-0160 ; 0000-0001-5796-3682 ; 0000-0001-5502-426X ; 0000-0002-0745-3956 ; 0000-0003-4472-5575 ; 0000-0002-6336-3007 ; 0000-0003-3097-3893 ; 0000-0003-1052-7060 ; 0000-0002-2965-6551 ; 0000-0002-1747-665X ; 0000-0002-7790-2788 ; 0000-0002-3370-8297 ; 0000-0003-3995-7961 ; 0009-0001-4222-6986 ; 0000-0001-5407-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2865943899/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865943899?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Lin, Ruyi</creatorcontrib><creatorcontrib>Su, Yuanqin</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Zheng, Xixi</creatorcontrib><creatorcontrib>Zhang, Jinsong</creatorcontrib><creatorcontrib>Lu, Xiaoyan</creatorcontrib><creatorcontrib>Zhao, Baiqin</creatorcontrib><creatorcontrib>Jiang, Xinchi</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Li, Ni</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Fan, Xiaohui</creatorcontrib><creatorcontrib>Xu, Donghang</creatorcontrib><creatorcontrib>Zhang, Tianyuan</creatorcontrib><creatorcontrib>Gao, Jianqing</creatorcontrib><title>Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention.
Using healthy mitochondria to restore impaired mitochondrial homeostasis is a promising therapy for pulmonary fibrosis. Here the authors use joint-engineered mesenchymal stem cells for efficient mitochondrial delivery to injured lung cells, showing a successful mitigation of the disease.</description><subject>13/100</subject><subject>13/109</subject><subject>13/31</subject><subject>13/51</subject><subject>14/19</subject><subject>14/28</subject><subject>38/77</subject><subject>38/91</subject><subject>631/532/2074</subject><subject>631/61/2296</subject><subject>631/80/642/333</subject><subject>639/166/985</subject><subject>64/60</subject><subject>96/34</subject><subject>Biosynthesis</subject><subject>Disease control</subject><subject>Fibrosis</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Iron oxides</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Mesenchymal stem cells</subject><subject>Mitochondria</subject><subject>Mitophagy</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Pioglitazone</subject><subject>Pulmonary fibrosis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Therapeutic applications</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vFSEUhonR2Kb2D7iaxI2bUT4HWBnTVG3SxI2uCQOHW25m4AozN-m_l95p1HYhLDg5vO8TPl6E3hL8gWCmPlZO-CB7TFnPiaC6ly_QOcWc9ERS9vKf-gxd1rrHbTBNFOev0RmTrU-YOEfzdQjRRUhLF9MC5diqmFMXcukO6zTnZMt9F-JYco21O0bbzXHJ7i4nX6KduqXYVAM0dclzXsB34_0zyRjzDhI0_xv0KtipwuXjeoF-frn-cfWtv_3-9ebq823vBFFLr5ngzgpQKjjlpOMKVKBUD1pqyuhIvbfQph3BazxyDjrowJzVTNvBcXaBbjauz3ZvDiXO7RYm22hOjVx2xpYlugkMp0xJ7aizvoFo0MT5QQAl2g9SKNpYnzbWYR1n8K49ULHTE-jTnRTvzC4fDcECS3wivH8klPxrhbqYOVYH02QT5LUaqoaBSc0G0qTvnkn3eS2pvdWDSmjOlNZNRTeVa79SC4Q_pyHYPKTDbOkwLR3mlA4jm4ltptrEaQflL_o_rt9etr7I</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Huang, Ting</creator><creator>Lin, Ruyi</creator><creator>Su, Yuanqin</creator><creator>Sun, Hao</creator><creator>Zheng, Xixi</creator><creator>Zhang, Jinsong</creator><creator>Lu, Xiaoyan</creator><creator>Zhao, Baiqin</creator><creator>Jiang, Xinchi</creator><creator>Huang, Lingling</creator><creator>Li, Ni</creator><creator>Shi, Jing</creator><creator>Fan, Xiaohui</creator><creator>Xu, Donghang</creator><creator>Zhang, Tianyuan</creator><creator>Gao, Jianqing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8887-0160</orcidid><orcidid>https://orcid.org/0000-0001-5796-3682</orcidid><orcidid>https://orcid.org/0000-0001-5502-426X</orcidid><orcidid>https://orcid.org/0000-0002-0745-3956</orcidid><orcidid>https://orcid.org/0000-0003-4472-5575</orcidid><orcidid>https://orcid.org/0000-0002-6336-3007</orcidid><orcidid>https://orcid.org/0000-0003-3097-3893</orcidid><orcidid>https://orcid.org/0000-0003-1052-7060</orcidid><orcidid>https://orcid.org/0000-0002-2965-6551</orcidid><orcidid>https://orcid.org/0000-0002-1747-665X</orcidid><orcidid>https://orcid.org/0000-0002-7790-2788</orcidid><orcidid>https://orcid.org/0000-0002-3370-8297</orcidid><orcidid>https://orcid.org/0000-0003-3995-7961</orcidid><orcidid>https://orcid.org/0009-0001-4222-6986</orcidid><orcidid>https://orcid.org/0000-0001-5407-8207</orcidid></search><sort><creationdate>20230918</creationdate><title>Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis</title><author>Huang, Ting ; Lin, Ruyi ; Su, Yuanqin ; Sun, Hao ; Zheng, Xixi ; Zhang, Jinsong ; Lu, Xiaoyan ; Zhao, Baiqin ; Jiang, Xinchi ; Huang, Lingling ; Li, Ni ; Shi, Jing ; Fan, Xiaohui ; Xu, Donghang ; Zhang, Tianyuan ; Gao, Jianqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/100</topic><topic>13/109</topic><topic>13/31</topic><topic>13/51</topic><topic>14/19</topic><topic>14/28</topic><topic>38/77</topic><topic>38/91</topic><topic>631/532/2074</topic><topic>631/61/2296</topic><topic>631/80/642/333</topic><topic>639/166/985</topic><topic>64/60</topic><topic>96/34</topic><topic>Biosynthesis</topic><topic>Disease control</topic><topic>Fibrosis</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Iron oxides</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Mesenchymal stem cells</topic><topic>Mitochondria</topic><topic>Mitophagy</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Pioglitazone</topic><topic>Pulmonary fibrosis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Lin, Ruyi</creatorcontrib><creatorcontrib>Su, Yuanqin</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Zheng, Xixi</creatorcontrib><creatorcontrib>Zhang, Jinsong</creatorcontrib><creatorcontrib>Lu, Xiaoyan</creatorcontrib><creatorcontrib>Zhao, Baiqin</creatorcontrib><creatorcontrib>Jiang, Xinchi</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Li, Ni</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Fan, Xiaohui</creatorcontrib><creatorcontrib>Xu, Donghang</creatorcontrib><creatorcontrib>Zhang, Tianyuan</creatorcontrib><creatorcontrib>Gao, Jianqing</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ting</au><au>Lin, Ruyi</au><au>Su, Yuanqin</au><au>Sun, Hao</au><au>Zheng, Xixi</au><au>Zhang, Jinsong</au><au>Lu, Xiaoyan</au><au>Zhao, Baiqin</au><au>Jiang, Xinchi</au><au>Huang, Lingling</au><au>Li, Ni</au><au>Shi, Jing</au><au>Fan, Xiaohui</au><au>Xu, Donghang</au><au>Zhang, Tianyuan</au><au>Gao, Jianqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-09-18</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5781</spage><epage>5781</epage><pages>5781-5781</pages><artnum>5781</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention.
Using healthy mitochondria to restore impaired mitochondrial homeostasis is a promising therapy for pulmonary fibrosis. Here the authors use joint-engineered mesenchymal stem cells for efficient mitochondrial delivery to injured lung cells, showing a successful mitigation of the disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37723135</pmid><doi>10.1038/s41467-023-41529-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8887-0160</orcidid><orcidid>https://orcid.org/0000-0001-5796-3682</orcidid><orcidid>https://orcid.org/0000-0001-5502-426X</orcidid><orcidid>https://orcid.org/0000-0002-0745-3956</orcidid><orcidid>https://orcid.org/0000-0003-4472-5575</orcidid><orcidid>https://orcid.org/0000-0002-6336-3007</orcidid><orcidid>https://orcid.org/0000-0003-3097-3893</orcidid><orcidid>https://orcid.org/0000-0003-1052-7060</orcidid><orcidid>https://orcid.org/0000-0002-2965-6551</orcidid><orcidid>https://orcid.org/0000-0002-1747-665X</orcidid><orcidid>https://orcid.org/0000-0002-7790-2788</orcidid><orcidid>https://orcid.org/0000-0002-3370-8297</orcidid><orcidid>https://orcid.org/0000-0003-3995-7961</orcidid><orcidid>https://orcid.org/0009-0001-4222-6986</orcidid><orcidid>https://orcid.org/0000-0001-5407-8207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-09, Vol.14 (1), p.5781-5781, Article 5781 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_423879c2cadb442f91cd65e219d67582 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/100 13/109 13/31 13/51 14/19 14/28 38/77 38/91 631/532/2074 631/61/2296 631/80/642/333 639/166/985 64/60 96/34 Biosynthesis Disease control Fibrosis Homeostasis Humanities and Social Sciences Iron oxides Lung diseases Lungs Mesenchymal stem cells Mitochondria Mitophagy multidisciplinary Nanoparticles Pioglitazone Pulmonary fibrosis Science Science (multidisciplinary) Stem cells Therapeutic applications |
title | Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20intervention%20for%20pulmonary%20fibrosis%20via%20mitochondrial%20transfer%20promoted%20by%20mitochondrial%20biogenesis&rft.jtitle=Nature%20communications&rft.au=Huang,%20Ting&rft.date=2023-09-18&rft.volume=14&rft.issue=1&rft.spage=5781&rft.epage=5781&rft.pages=5781-5781&rft.artnum=5781&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41529-7&rft_dat=%3Cproquest_doaj_%3E2865943899%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865943899&rft_id=info:pmid/37723135&rfr_iscdi=true |