Loading…

Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis

The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the g...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-09, Vol.14 (1), p.5781-5781, Article 5781
Main Authors: Huang, Ting, Lin, Ruyi, Su, Yuanqin, Sun, Hao, Zheng, Xixi, Zhang, Jinsong, Lu, Xiaoyan, Zhao, Baiqin, Jiang, Xinchi, Huang, Lingling, Li, Ni, Shi, Jing, Fan, Xiaohui, Xu, Donghang, Zhang, Tianyuan, Gao, Jianqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43
cites cdi_FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43
container_end_page 5781
container_issue 1
container_start_page 5781
container_title Nature communications
container_volume 14
creator Huang, Ting
Lin, Ruyi
Su, Yuanqin
Sun, Hao
Zheng, Xixi
Zhang, Jinsong
Lu, Xiaoyan
Zhao, Baiqin
Jiang, Xinchi
Huang, Lingling
Li, Ni
Shi, Jing
Fan, Xiaohui
Xu, Donghang
Zhang, Tianyuan
Gao, Jianqing
description The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention. Using healthy mitochondria to restore impaired mitochondrial homeostasis is a promising therapy for pulmonary fibrosis. Here the authors use joint-engineered mesenchymal stem cells for efficient mitochondrial delivery to injured lung cells, showing a successful mitigation of the disease.
doi_str_mv 10.1038/s41467-023-41529-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_423879c2cadb442f91cd65e219d67582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_423879c2cadb442f91cd65e219d67582</doaj_id><sourcerecordid>2865943899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43</originalsourceid><addsrcrecordid>eNp9kk1vFSEUhonR2Kb2D7iaxI2bUT4HWBnTVG3SxI2uCQOHW25m4AozN-m_l95p1HYhLDg5vO8TPl6E3hL8gWCmPlZO-CB7TFnPiaC6ly_QOcWc9ERS9vKf-gxd1rrHbTBNFOev0RmTrU-YOEfzdQjRRUhLF9MC5diqmFMXcukO6zTnZMt9F-JYco21O0bbzXHJ7i4nX6KduqXYVAM0dclzXsB34_0zyRjzDhI0_xv0KtipwuXjeoF-frn-cfWtv_3-9ebq823vBFFLr5ngzgpQKjjlpOMKVKBUD1pqyuhIvbfQph3BazxyDjrowJzVTNvBcXaBbjauz3ZvDiXO7RYm22hOjVx2xpYlugkMp0xJ7aizvoFo0MT5QQAl2g9SKNpYnzbWYR1n8K49ULHTE-jTnRTvzC4fDcECS3wivH8klPxrhbqYOVYH02QT5LUaqoaBSc0G0qTvnkn3eS2pvdWDSmjOlNZNRTeVa79SC4Q_pyHYPKTDbOkwLR3mlA4jm4ltptrEaQflL_o_rt9etr7I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865943899</pqid></control><display><type>article</type><title>Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Huang, Ting ; Lin, Ruyi ; Su, Yuanqin ; Sun, Hao ; Zheng, Xixi ; Zhang, Jinsong ; Lu, Xiaoyan ; Zhao, Baiqin ; Jiang, Xinchi ; Huang, Lingling ; Li, Ni ; Shi, Jing ; Fan, Xiaohui ; Xu, Donghang ; Zhang, Tianyuan ; Gao, Jianqing</creator><creatorcontrib>Huang, Ting ; Lin, Ruyi ; Su, Yuanqin ; Sun, Hao ; Zheng, Xixi ; Zhang, Jinsong ; Lu, Xiaoyan ; Zhao, Baiqin ; Jiang, Xinchi ; Huang, Lingling ; Li, Ni ; Shi, Jing ; Fan, Xiaohui ; Xu, Donghang ; Zhang, Tianyuan ; Gao, Jianqing</creatorcontrib><description>The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention. Using healthy mitochondria to restore impaired mitochondrial homeostasis is a promising therapy for pulmonary fibrosis. Here the authors use joint-engineered mesenchymal stem cells for efficient mitochondrial delivery to injured lung cells, showing a successful mitigation of the disease.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41529-7</identifier><identifier>PMID: 37723135</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/109 ; 13/31 ; 13/51 ; 14/19 ; 14/28 ; 38/77 ; 38/91 ; 631/532/2074 ; 631/61/2296 ; 631/80/642/333 ; 639/166/985 ; 64/60 ; 96/34 ; Biosynthesis ; Disease control ; Fibrosis ; Homeostasis ; Humanities and Social Sciences ; Iron oxides ; Lung diseases ; Lungs ; Mesenchymal stem cells ; Mitochondria ; Mitophagy ; multidisciplinary ; Nanoparticles ; Pioglitazone ; Pulmonary fibrosis ; Science ; Science (multidisciplinary) ; Stem cells ; Therapeutic applications</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5781-5781, Article 5781</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43</citedby><cites>FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43</cites><orcidid>0000-0002-8887-0160 ; 0000-0001-5796-3682 ; 0000-0001-5502-426X ; 0000-0002-0745-3956 ; 0000-0003-4472-5575 ; 0000-0002-6336-3007 ; 0000-0003-3097-3893 ; 0000-0003-1052-7060 ; 0000-0002-2965-6551 ; 0000-0002-1747-665X ; 0000-0002-7790-2788 ; 0000-0002-3370-8297 ; 0000-0003-3995-7961 ; 0009-0001-4222-6986 ; 0000-0001-5407-8207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2865943899/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2865943899?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Lin, Ruyi</creatorcontrib><creatorcontrib>Su, Yuanqin</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Zheng, Xixi</creatorcontrib><creatorcontrib>Zhang, Jinsong</creatorcontrib><creatorcontrib>Lu, Xiaoyan</creatorcontrib><creatorcontrib>Zhao, Baiqin</creatorcontrib><creatorcontrib>Jiang, Xinchi</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Li, Ni</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Fan, Xiaohui</creatorcontrib><creatorcontrib>Xu, Donghang</creatorcontrib><creatorcontrib>Zhang, Tianyuan</creatorcontrib><creatorcontrib>Gao, Jianqing</creatorcontrib><title>Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention. Using healthy mitochondria to restore impaired mitochondrial homeostasis is a promising therapy for pulmonary fibrosis. Here the authors use joint-engineered mesenchymal stem cells for efficient mitochondrial delivery to injured lung cells, showing a successful mitigation of the disease.</description><subject>13/100</subject><subject>13/109</subject><subject>13/31</subject><subject>13/51</subject><subject>14/19</subject><subject>14/28</subject><subject>38/77</subject><subject>38/91</subject><subject>631/532/2074</subject><subject>631/61/2296</subject><subject>631/80/642/333</subject><subject>639/166/985</subject><subject>64/60</subject><subject>96/34</subject><subject>Biosynthesis</subject><subject>Disease control</subject><subject>Fibrosis</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Iron oxides</subject><subject>Lung diseases</subject><subject>Lungs</subject><subject>Mesenchymal stem cells</subject><subject>Mitochondria</subject><subject>Mitophagy</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Pioglitazone</subject><subject>Pulmonary fibrosis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><subject>Therapeutic applications</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vFSEUhonR2Kb2D7iaxI2bUT4HWBnTVG3SxI2uCQOHW25m4AozN-m_l95p1HYhLDg5vO8TPl6E3hL8gWCmPlZO-CB7TFnPiaC6ly_QOcWc9ERS9vKf-gxd1rrHbTBNFOev0RmTrU-YOEfzdQjRRUhLF9MC5diqmFMXcukO6zTnZMt9F-JYco21O0bbzXHJ7i4nX6KduqXYVAM0dclzXsB34_0zyRjzDhI0_xv0KtipwuXjeoF-frn-cfWtv_3-9ebq823vBFFLr5ngzgpQKjjlpOMKVKBUD1pqyuhIvbfQph3BazxyDjrowJzVTNvBcXaBbjauz3ZvDiXO7RYm22hOjVx2xpYlugkMp0xJ7aizvoFo0MT5QQAl2g9SKNpYnzbWYR1n8K49ULHTE-jTnRTvzC4fDcECS3wivH8klPxrhbqYOVYH02QT5LUaqoaBSc0G0qTvnkn3eS2pvdWDSmjOlNZNRTeVa79SC4Q_pyHYPKTDbOkwLR3mlA4jm4ltptrEaQflL_o_rt9etr7I</recordid><startdate>20230918</startdate><enddate>20230918</enddate><creator>Huang, Ting</creator><creator>Lin, Ruyi</creator><creator>Su, Yuanqin</creator><creator>Sun, Hao</creator><creator>Zheng, Xixi</creator><creator>Zhang, Jinsong</creator><creator>Lu, Xiaoyan</creator><creator>Zhao, Baiqin</creator><creator>Jiang, Xinchi</creator><creator>Huang, Lingling</creator><creator>Li, Ni</creator><creator>Shi, Jing</creator><creator>Fan, Xiaohui</creator><creator>Xu, Donghang</creator><creator>Zhang, Tianyuan</creator><creator>Gao, Jianqing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8887-0160</orcidid><orcidid>https://orcid.org/0000-0001-5796-3682</orcidid><orcidid>https://orcid.org/0000-0001-5502-426X</orcidid><orcidid>https://orcid.org/0000-0002-0745-3956</orcidid><orcidid>https://orcid.org/0000-0003-4472-5575</orcidid><orcidid>https://orcid.org/0000-0002-6336-3007</orcidid><orcidid>https://orcid.org/0000-0003-3097-3893</orcidid><orcidid>https://orcid.org/0000-0003-1052-7060</orcidid><orcidid>https://orcid.org/0000-0002-2965-6551</orcidid><orcidid>https://orcid.org/0000-0002-1747-665X</orcidid><orcidid>https://orcid.org/0000-0002-7790-2788</orcidid><orcidid>https://orcid.org/0000-0002-3370-8297</orcidid><orcidid>https://orcid.org/0000-0003-3995-7961</orcidid><orcidid>https://orcid.org/0009-0001-4222-6986</orcidid><orcidid>https://orcid.org/0000-0001-5407-8207</orcidid></search><sort><creationdate>20230918</creationdate><title>Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis</title><author>Huang, Ting ; Lin, Ruyi ; Su, Yuanqin ; Sun, Hao ; Zheng, Xixi ; Zhang, Jinsong ; Lu, Xiaoyan ; Zhao, Baiqin ; Jiang, Xinchi ; Huang, Lingling ; Li, Ni ; Shi, Jing ; Fan, Xiaohui ; Xu, Donghang ; Zhang, Tianyuan ; Gao, Jianqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/100</topic><topic>13/109</topic><topic>13/31</topic><topic>13/51</topic><topic>14/19</topic><topic>14/28</topic><topic>38/77</topic><topic>38/91</topic><topic>631/532/2074</topic><topic>631/61/2296</topic><topic>631/80/642/333</topic><topic>639/166/985</topic><topic>64/60</topic><topic>96/34</topic><topic>Biosynthesis</topic><topic>Disease control</topic><topic>Fibrosis</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Iron oxides</topic><topic>Lung diseases</topic><topic>Lungs</topic><topic>Mesenchymal stem cells</topic><topic>Mitochondria</topic><topic>Mitophagy</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Pioglitazone</topic><topic>Pulmonary fibrosis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Lin, Ruyi</creatorcontrib><creatorcontrib>Su, Yuanqin</creatorcontrib><creatorcontrib>Sun, Hao</creatorcontrib><creatorcontrib>Zheng, Xixi</creatorcontrib><creatorcontrib>Zhang, Jinsong</creatorcontrib><creatorcontrib>Lu, Xiaoyan</creatorcontrib><creatorcontrib>Zhao, Baiqin</creatorcontrib><creatorcontrib>Jiang, Xinchi</creatorcontrib><creatorcontrib>Huang, Lingling</creatorcontrib><creatorcontrib>Li, Ni</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Fan, Xiaohui</creatorcontrib><creatorcontrib>Xu, Donghang</creatorcontrib><creatorcontrib>Zhang, Tianyuan</creatorcontrib><creatorcontrib>Gao, Jianqing</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ting</au><au>Lin, Ruyi</au><au>Su, Yuanqin</au><au>Sun, Hao</au><au>Zheng, Xixi</au><au>Zhang, Jinsong</au><au>Lu, Xiaoyan</au><au>Zhao, Baiqin</au><au>Jiang, Xinchi</au><au>Huang, Lingling</au><au>Li, Ni</au><au>Shi, Jing</au><au>Fan, Xiaohui</au><au>Xu, Donghang</au><au>Zhang, Tianyuan</au><au>Gao, Jianqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-09-18</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5781</spage><epage>5781</epage><pages>5781-5781</pages><artnum>5781</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The use of exogenous mitochondria to replenish damaged mitochondria has been proposed as a strategy for the treatment of pulmonary fibrosis. However, the success of this strategy is partially restricted by the difficulty of supplying sufficient mitochondria to diseased cells. Herein, we report the generation of high-powered mesenchymal stem cells with promoted mitochondrial biogenesis and facilitated mitochondrial transfer to injured lung cells by the sequential treatment of pioglitazone and iron oxide nanoparticles. This highly efficient mitochondrial transfer is shown to not only restore mitochondrial homeostasis but also reactivate inhibited mitophagy, consequently recovering impaired cellular functions. We perform studies in mouse to show that these high-powered mesenchymal stem cells successfully mitigate fibrotic progression in a progressive fibrosis model, which was further verified in a humanized multicellular lung spheroid model. The present findings provide a potential strategy to overcome the current limitations in mitochondrial replenishment therapy, thereby promoting therapeutic applications for fibrotic intervention. Using healthy mitochondria to restore impaired mitochondrial homeostasis is a promising therapy for pulmonary fibrosis. Here the authors use joint-engineered mesenchymal stem cells for efficient mitochondrial delivery to injured lung cells, showing a successful mitigation of the disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37723135</pmid><doi>10.1038/s41467-023-41529-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8887-0160</orcidid><orcidid>https://orcid.org/0000-0001-5796-3682</orcidid><orcidid>https://orcid.org/0000-0001-5502-426X</orcidid><orcidid>https://orcid.org/0000-0002-0745-3956</orcidid><orcidid>https://orcid.org/0000-0003-4472-5575</orcidid><orcidid>https://orcid.org/0000-0002-6336-3007</orcidid><orcidid>https://orcid.org/0000-0003-3097-3893</orcidid><orcidid>https://orcid.org/0000-0003-1052-7060</orcidid><orcidid>https://orcid.org/0000-0002-2965-6551</orcidid><orcidid>https://orcid.org/0000-0002-1747-665X</orcidid><orcidid>https://orcid.org/0000-0002-7790-2788</orcidid><orcidid>https://orcid.org/0000-0002-3370-8297</orcidid><orcidid>https://orcid.org/0000-0003-3995-7961</orcidid><orcidid>https://orcid.org/0009-0001-4222-6986</orcidid><orcidid>https://orcid.org/0000-0001-5407-8207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-09, Vol.14 (1), p.5781-5781, Article 5781
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_423879c2cadb442f91cd65e219d67582
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/100
13/109
13/31
13/51
14/19
14/28
38/77
38/91
631/532/2074
631/61/2296
631/80/642/333
639/166/985
64/60
96/34
Biosynthesis
Disease control
Fibrosis
Homeostasis
Humanities and Social Sciences
Iron oxides
Lung diseases
Lungs
Mesenchymal stem cells
Mitochondria
Mitophagy
multidisciplinary
Nanoparticles
Pioglitazone
Pulmonary fibrosis
Science
Science (multidisciplinary)
Stem cells
Therapeutic applications
title Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20intervention%20for%20pulmonary%20fibrosis%20via%20mitochondrial%20transfer%20promoted%20by%20mitochondrial%20biogenesis&rft.jtitle=Nature%20communications&rft.au=Huang,%20Ting&rft.date=2023-09-18&rft.volume=14&rft.issue=1&rft.spage=5781&rft.epage=5781&rft.pages=5781-5781&rft.artnum=5781&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41529-7&rft_dat=%3Cproquest_doaj_%3E2865943899%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-9354ca5e88fc8c7c48e8f2296979232b2ddaeaeaabed90b44e9f9f3ca939a6c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865943899&rft_id=info:pmid/37723135&rfr_iscdi=true