Loading…
Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function
This article uses fractional calculus to create novel links between the well-known Mittag-Leffler functions of one, two, three, and four parameters. Hence, this paper studies several new analytical properties using fractional integration and differentiation for the Mittag-Leffler function formulated...
Saved in:
Published in: | Fractal and fractional 2021-12, Vol.5 (4), p.143 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article uses fractional calculus to create novel links between the well-known Mittag-Leffler functions of one, two, three, and four parameters. Hence, this paper studies several new analytical properties using fractional integration and differentiation for the Mittag-Leffler function formulated by confluent hypergeometric functions. We construct a four-parameter integral expression in terms of one-parameter. The paper explains the significance and applications of each of the four Mittag-Leffler functions, with the goal of using our findings to make analyzing specific kinds of experimental results considerably simpler. |
---|---|
ISSN: | 2504-3110 2504-3110 |
DOI: | 10.3390/fractalfract5040143 |