Loading…

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

Focused electron beam-induced processing is a versatile method for the fabrication of metallic nanostructures with arbitrary shape, in particular, on top of two-dimensional (2D) organic materials, such as self-assembled monolayers (SAMs). Two methods, namely electron beam-induced deposition (EBID) a...

Full description

Saved in:
Bibliographic Details
Published in:Beilstein journal of nanotechnology 2021, Vol.12 (1), p.319-329
Main Authors: Preischl, Christian, Le, Linh Hoang, Bilgilisoy, Elif, Gölzhäuser, Armin, Marbach, Hubertus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Focused electron beam-induced processing is a versatile method for the fabrication of metallic nanostructures with arbitrary shape, in particular, on top of two-dimensional (2D) organic materials, such as self-assembled monolayers (SAMs). Two methods, namely electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) are studied with the precursors Fe(CO) and Co(CO) NO on SAMs of 1,1',4',1''-terphenyl-4-thiol (TPT). For Co(CO) NO only EBID leads to deposits consisting of cobalt oxide. In the case of Fe(CO) EBID and EBISA yield deposits consisting of iron nanocrystals with high purity. Remarkably, the EBISA process exhibits a strong time dependence, which is analyzed in detail for different electron doses. This time dependence is a new phenomenon, which, to the best of our knowledge, was not reported before. The electron-induced cross-linking of the SAM caused by the cleavage of C-H bonds and the subsequent formation of new C-C bonds between neighboring molecules also seems to play a crucial role in the EBISA process. Previous studies showed that iron nanostructures fabricated on top of a cross-linked SAM on Au/mica can be transferred to solid substrates and grids without any changes, aside from oxidation. Here we demonstrate that iron as well as cobalt oxide structures on top of a cross-linked SAM on Ag/mica do change more significantly. The Fe(NO ) solution used for etching of the Ag layer also dissolves the cobalt oxide structures and causes dissolution and reduction of the iron structures. These results demonstrate that the fabrication of hybrids of metallic nanostructures onto organic 2D materials is an intrinsically complex procedure. The interactions among the metallic deposits, the substrate for the growth of the SAM, and the associated etching/dissolving agent need to be considered and further studied.
ISSN:2190-4286
2190-4286
DOI:10.3762/bjnano.12.26