Loading…
Lefschetz-Pontrjagin duality for differential characters
A theory of differential characters is developed for manifolds with boundary. This is done from both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the pairing given by (...
Saved in:
Published in: | Anais da Academia Brasileira de Ciências 2001-06, Vol.73 (2), p.145-159 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A theory of differential characters is developed for manifolds with boundary. This is done from both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the pairing given by (alpha, beta) (alpha * beta) [X] induces isomorphisms onto the smooth Pontrjagin duals. In particular, and are injective with dense range in the group of all continuous homomorphisms into the circle. A coboundary map is introduced which yields a long sequence for the character groups associated to the pair (X, X). The relation of the sequence to the duality mappings is analyzed.
Uma teoria de caracteres diferenciais é aqui desenvolvida para variedades com bordo. Isto é feito tanto do ponto de vista de Cheeger-Simons como do deRham-Federer. O resultado central deste artigo é a formulação e a prova de um teorema da dualidade de Lefschetz-Pontrjagin, que afirma que o pareamento dado por (alfa,beta) (alfa * beta) [X] induz isomorfismos sobre os duais diferenciáveis de Pontrjagin. Em particular, e são injetivos com domínios densos no grupo de todos os homeomorfismos contínuos no círculo. Uma aplicação de cobordo é introduzida, a qual fornece uma sequência longa para os grupos de caracteres associados ao par ( X, X). A relação desta sequência com as aplicações de dualidade é analisada. |
---|---|
ISSN: | 0001-3765 1678-2690 0001-3765 1678-2690 |
DOI: | 10.1590/S0001-37652001000200001 |