Loading…
A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates
Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood v...
Saved in:
Published in: | Scientific reports 2017-05, Vol.7 (1), p.1980-8, Article 1980 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-7745c72656f667d179bcb448a6b13e34c9bf703eec738349a53d204ed603208f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-7745c72656f667d179bcb448a6b13e34c9bf703eec738349a53d204ed603208f3 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 1980 |
container_title | Scientific reports |
container_volume | 7 |
creator | Lee, Juhyun Chou, Tzu-Chieh Kang, Dongyang Kang, Hanul Chen, Junjie Baek, Kyung In Wang, Wei Ding, Yichen Carlo, Dino Di Tai, Yu-Chong Hsiai, Tzung K. |
description | Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood viscosity. To address this challenge, a microfluidic viscometer driven by surface tension was developed to reduce the sample volume required (3μL) for rapid (500 s
−1
), at which the power law exponent (n) of zebrafish blood was nearly 1 behaving as a Newtonian fluid. The measured values of whole blood from the micro-channel (4.17cP) and the vacuum method (4.22cP) at 500 s
−1
were closely correlated at 27 °C. A calibration curve was established for viscosity as a function of hematocrits to predict a rise and fall in viscosity during embryonic development. Thus, our rapid capillary pressure-driven micro-channel revealed the Newtonian fluid behavior of zebrafish blood at high shear rates and the dynamic viscosity during development. |
doi_str_mv | 10.1038/s41598-017-02253-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_43c6bbf9166f437aa0260183151a7e83</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_43c6bbf9166f437aa0260183151a7e83</doaj_id><sourcerecordid>1899793368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-7745c72656f667d179bcb448a6b13e34c9bf703eec738349a53d204ed603208f3</originalsourceid><addsrcrecordid>eNp1kstu1DAUhiMEolXpC7BAltiwCfh-2SC1U0orlYu4bNhYTnIy8ShjT-1kEBueHbdTqikSXtiWz-_P5xz_VfWc4NcEM_0mcyKMrjFRNaZUsFo9qg4p5qKmjNLHe_uD6jjnFS5DUMOJeVodUC0IZYQdVr9P0Be38R1alHkcXfpVf06Q85wAnSW_hYA--DbFejG4EGBEU0RnsI4hT8lNgD7CzykG7wI6H-eCOYXBbX1MKPboBzTJ9T4P6HSMsUNuQhd-OaCvA7hUnp0gP6ue9G7McHy3HlXfz999W1zUV5_eXy5OrupWYjnVSnHRKiqF7KVUHVGmaRvOtZMNYcB4a5peYQbQKqYZN06wrtQPncSMYt2zo-pyx-2iW9lN8utSqY3O29uDmJbWpcm3I1jOWtk0vSFS9pwp5zCVmGhGBHEKNCustzvWZm7W0LUQSivGB9CHkeAHu4xbKzjjJZ8CeHUHSPF6hjzZtc8tlO4HiHO2RBujDGNSF-nLf6SrOKdQWmWJEYIrKckNkO5U5aNyTtDfJ0OwvXGL3bnFFrfYW7dYVS692C_j_spfbxQB2wlyCYUlpL23_4_9A6LWyVc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955476612</pqid></control><display><type>article</type><title>A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Lee, Juhyun ; Chou, Tzu-Chieh ; Kang, Dongyang ; Kang, Hanul ; Chen, Junjie ; Baek, Kyung In ; Wang, Wei ; Ding, Yichen ; Carlo, Dino Di ; Tai, Yu-Chong ; Hsiai, Tzung K.</creator><creatorcontrib>Lee, Juhyun ; Chou, Tzu-Chieh ; Kang, Dongyang ; Kang, Hanul ; Chen, Junjie ; Baek, Kyung In ; Wang, Wei ; Ding, Yichen ; Carlo, Dino Di ; Tai, Yu-Chong ; Hsiai, Tzung K.</creatorcontrib><description>Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood viscosity. To address this challenge, a microfluidic viscometer driven by surface tension was developed to reduce the sample volume required (3μL) for rapid (<2 min) and continuous viscosity measurement. By fitting the power-law fluid model to the travel distance of blood through the micro-channel as a function of time and channel configuration, the experimentally acquired blood viscosity was compared with a vacuum-driven capillary viscometer at high shear rates (>500 s
−1
), at which the power law exponent (n) of zebrafish blood was nearly 1 behaving as a Newtonian fluid. The measured values of whole blood from the micro-channel (4.17cP) and the vacuum method (4.22cP) at 500 s
−1
were closely correlated at 27 °C. A calibration curve was established for viscosity as a function of hematocrits to predict a rise and fall in viscosity during embryonic development. Thus, our rapid capillary pressure-driven micro-channel revealed the Newtonian fluid behavior of zebrafish blood at high shear rates and the dynamic viscosity during development.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-02253-7</identifier><identifier>PMID: 28512313</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/601/1737 ; 639/166/985 ; Animals ; Biomechanical Phenomena ; Blood ; Blood Viscosity ; Danio rerio ; Developmental biology ; Drug discovery ; Embryogenesis ; Embryonic growth stage ; Genetics ; Heart diseases ; Hemodynamics ; Hemorheology ; Humanities and Social Sciences ; Mechanical stimuli ; Microfluidics ; Microfluidics - methods ; multidisciplinary ; Pressure ; Reproducibility of Results ; Science ; Science (multidisciplinary) ; Shear stress ; Stress, Mechanical ; Surface tension ; Vacuum ; Viscosity ; Zebrafish ; Zebrafish - physiology</subject><ispartof>Scientific reports, 2017-05, Vol.7 (1), p.1980-8, Article 1980</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-7745c72656f667d179bcb448a6b13e34c9bf703eec738349a53d204ed603208f3</citedby><cites>FETCH-LOGICAL-c606t-7745c72656f667d179bcb448a6b13e34c9bf703eec738349a53d204ed603208f3</cites><orcidid>0000-0002-6242-3506 ; 0000-0002-6074-8286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1955476612/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1955476612?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28512313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Juhyun</creatorcontrib><creatorcontrib>Chou, Tzu-Chieh</creatorcontrib><creatorcontrib>Kang, Dongyang</creatorcontrib><creatorcontrib>Kang, Hanul</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Baek, Kyung In</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ding, Yichen</creatorcontrib><creatorcontrib>Carlo, Dino Di</creatorcontrib><creatorcontrib>Tai, Yu-Chong</creatorcontrib><creatorcontrib>Hsiai, Tzung K.</creatorcontrib><title>A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood viscosity. To address this challenge, a microfluidic viscometer driven by surface tension was developed to reduce the sample volume required (3μL) for rapid (<2 min) and continuous viscosity measurement. By fitting the power-law fluid model to the travel distance of blood through the micro-channel as a function of time and channel configuration, the experimentally acquired blood viscosity was compared with a vacuum-driven capillary viscometer at high shear rates (>500 s
−1
), at which the power law exponent (n) of zebrafish blood was nearly 1 behaving as a Newtonian fluid. The measured values of whole blood from the micro-channel (4.17cP) and the vacuum method (4.22cP) at 500 s
−1
were closely correlated at 27 °C. A calibration curve was established for viscosity as a function of hematocrits to predict a rise and fall in viscosity during embryonic development. Thus, our rapid capillary pressure-driven micro-channel revealed the Newtonian fluid behavior of zebrafish blood at high shear rates and the dynamic viscosity during development.</description><subject>631/601/1737</subject><subject>639/166/985</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Blood</subject><subject>Blood Viscosity</subject><subject>Danio rerio</subject><subject>Developmental biology</subject><subject>Drug discovery</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Genetics</subject><subject>Heart diseases</subject><subject>Hemodynamics</subject><subject>Hemorheology</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical stimuli</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>multidisciplinary</subject><subject>Pressure</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear stress</subject><subject>Stress, Mechanical</subject><subject>Surface tension</subject><subject>Vacuum</subject><subject>Viscosity</subject><subject>Zebrafish</subject><subject>Zebrafish - physiology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kstu1DAUhiMEolXpC7BAltiwCfh-2SC1U0orlYu4bNhYTnIy8ShjT-1kEBueHbdTqikSXtiWz-_P5xz_VfWc4NcEM_0mcyKMrjFRNaZUsFo9qg4p5qKmjNLHe_uD6jjnFS5DUMOJeVodUC0IZYQdVr9P0Be38R1alHkcXfpVf06Q85wAnSW_hYA--DbFejG4EGBEU0RnsI4hT8lNgD7CzykG7wI6H-eCOYXBbX1MKPboBzTJ9T4P6HSMsUNuQhd-OaCvA7hUnp0gP6ue9G7McHy3HlXfz999W1zUV5_eXy5OrupWYjnVSnHRKiqF7KVUHVGmaRvOtZMNYcB4a5peYQbQKqYZN06wrtQPncSMYt2zo-pyx-2iW9lN8utSqY3O29uDmJbWpcm3I1jOWtk0vSFS9pwp5zCVmGhGBHEKNCustzvWZm7W0LUQSivGB9CHkeAHu4xbKzjjJZ8CeHUHSPF6hjzZtc8tlO4HiHO2RBujDGNSF-nLf6SrOKdQWmWJEYIrKckNkO5U5aNyTtDfJ0OwvXGL3bnFFrfYW7dYVS692C_j_spfbxQB2wlyCYUlpL23_4_9A6LWyVc</recordid><startdate>20170516</startdate><enddate>20170516</enddate><creator>Lee, Juhyun</creator><creator>Chou, Tzu-Chieh</creator><creator>Kang, Dongyang</creator><creator>Kang, Hanul</creator><creator>Chen, Junjie</creator><creator>Baek, Kyung In</creator><creator>Wang, Wei</creator><creator>Ding, Yichen</creator><creator>Carlo, Dino Di</creator><creator>Tai, Yu-Chong</creator><creator>Hsiai, Tzung K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6242-3506</orcidid><orcidid>https://orcid.org/0000-0002-6074-8286</orcidid></search><sort><creationdate>20170516</creationdate><title>A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates</title><author>Lee, Juhyun ; Chou, Tzu-Chieh ; Kang, Dongyang ; Kang, Hanul ; Chen, Junjie ; Baek, Kyung In ; Wang, Wei ; Ding, Yichen ; Carlo, Dino Di ; Tai, Yu-Chong ; Hsiai, Tzung K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-7745c72656f667d179bcb448a6b13e34c9bf703eec738349a53d204ed603208f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/601/1737</topic><topic>639/166/985</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Blood</topic><topic>Blood Viscosity</topic><topic>Danio rerio</topic><topic>Developmental biology</topic><topic>Drug discovery</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Genetics</topic><topic>Heart diseases</topic><topic>Hemodynamics</topic><topic>Hemorheology</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical stimuli</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>multidisciplinary</topic><topic>Pressure</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear stress</topic><topic>Stress, Mechanical</topic><topic>Surface tension</topic><topic>Vacuum</topic><topic>Viscosity</topic><topic>Zebrafish</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Juhyun</creatorcontrib><creatorcontrib>Chou, Tzu-Chieh</creatorcontrib><creatorcontrib>Kang, Dongyang</creatorcontrib><creatorcontrib>Kang, Hanul</creatorcontrib><creatorcontrib>Chen, Junjie</creatorcontrib><creatorcontrib>Baek, Kyung In</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Ding, Yichen</creatorcontrib><creatorcontrib>Carlo, Dino Di</creatorcontrib><creatorcontrib>Tai, Yu-Chong</creatorcontrib><creatorcontrib>Hsiai, Tzung K.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Juhyun</au><au>Chou, Tzu-Chieh</au><au>Kang, Dongyang</au><au>Kang, Hanul</au><au>Chen, Junjie</au><au>Baek, Kyung In</au><au>Wang, Wei</au><au>Ding, Yichen</au><au>Carlo, Dino Di</au><au>Tai, Yu-Chong</au><au>Hsiai, Tzung K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-05-16</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>1980</spage><epage>8</epage><pages>1980-8</pages><artnum>1980</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood viscosity. To address this challenge, a microfluidic viscometer driven by surface tension was developed to reduce the sample volume required (3μL) for rapid (<2 min) and continuous viscosity measurement. By fitting the power-law fluid model to the travel distance of blood through the micro-channel as a function of time and channel configuration, the experimentally acquired blood viscosity was compared with a vacuum-driven capillary viscometer at high shear rates (>500 s
−1
), at which the power law exponent (n) of zebrafish blood was nearly 1 behaving as a Newtonian fluid. The measured values of whole blood from the micro-channel (4.17cP) and the vacuum method (4.22cP) at 500 s
−1
were closely correlated at 27 °C. A calibration curve was established for viscosity as a function of hematocrits to predict a rise and fall in viscosity during embryonic development. Thus, our rapid capillary pressure-driven micro-channel revealed the Newtonian fluid behavior of zebrafish blood at high shear rates and the dynamic viscosity during development.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28512313</pmid><doi>10.1038/s41598-017-02253-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6242-3506</orcidid><orcidid>https://orcid.org/0000-0002-6074-8286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-05, Vol.7 (1), p.1980-8, Article 1980 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_43c6bbf9166f437aa0260183151a7e83 |
source | PubMed Central (Open Access); Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/601/1737 639/166/985 Animals Biomechanical Phenomena Blood Blood Viscosity Danio rerio Developmental biology Drug discovery Embryogenesis Embryonic growth stage Genetics Heart diseases Hemodynamics Hemorheology Humanities and Social Sciences Mechanical stimuli Microfluidics Microfluidics - methods multidisciplinary Pressure Reproducibility of Results Science Science (multidisciplinary) Shear stress Stress, Mechanical Surface tension Vacuum Viscosity Zebrafish Zebrafish - physiology |
title | A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rapid%20Capillary-Pressure%20Driven%20Micro-Channel%20to%20Demonstrate%20Newtonian%20Fluid%20Behavior%20of%20Zebrafish%20Blood%20at%20High%20Shear%20Rates&rft.jtitle=Scientific%20reports&rft.au=Lee,%20Juhyun&rft.date=2017-05-16&rft.volume=7&rft.issue=1&rft.spage=1980&rft.epage=8&rft.pages=1980-8&rft.artnum=1980&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-02253-7&rft_dat=%3Cproquest_doaj_%3E1899793368%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-7745c72656f667d179bcb448a6b13e34c9bf703eec738349a53d204ed603208f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955476612&rft_id=info:pmid/28512313&rfr_iscdi=true |