Loading…
Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation
Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetall...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2024-08, Vol.29 (16), p.3734 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553 |
container_end_page | |
container_issue | 16 |
container_start_page | 3734 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 29 |
creator | Zhu, Yizhen Chen, Xiangyu Zhang, Yuanyao Zhu, Zhifei Chen, Handan Chai, Kejie Xu, Weiming |
description | Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm
in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation. |
doi_str_mv | 10.3390/molecules29163734 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_44411966beff4d7c9bf328267144b417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_44411966beff4d7c9bf328267144b417</doaj_id><sourcerecordid>3098053807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553</originalsourceid><addsrcrecordid>eNplkk9vEzEQxVcIREvhA3BBlrhwWbDX_9YnVKqUVqrSSzlbXu84cXDsYnsR4dOzaUrVwskjz5uf3oxe07wl-COlCn_apgB2ClA6RQSVlD1rjgnrcEsxU88f1UfNq1I2GHeEEf6yOaKqw11P2HEzLX3NaQWxvZniqlSI6PqXHwEtTUyl5snWKUNBKaKlt98hoPNktsgUdOFXa7RwzlsPsaLFbGUmWVNN2JVakEsZfYH4exfQabBpncId2VSf4uvmhTOhwJv796T5dr64Obtor66_Xp6dXrWWSlFbkNYZ40DyUUhGR-WkGowUquesZx2nomfUwuAkx8aO1PCREz7g0fXYCc7pSXN54I7JbPRt9luTdzoZr-8-Ul5pk6u3ATRjjBAlxADOsVFaNTja9Z2QhLGBETmzPh9Yt9OwhdHOS2cTnkCfdqJf61X6qQmhXBIuZsKHe0JOPyYoVW99sRCCiZCmoilWSioqMJ6l7_-RbtKU43yrvarHnPZ4b4kcVDanUjK4BzcE631C9H8JmWfePV7jYeJvJOgf70-63g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098053807</pqid></control><display><type>article</type><title>Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhu, Yizhen ; Chen, Xiangyu ; Zhang, Yuanyao ; Zhu, Zhifei ; Chen, Handan ; Chai, Kejie ; Xu, Weiming</creator><creatorcontrib>Zhu, Yizhen ; Chen, Xiangyu ; Zhang, Yuanyao ; Zhu, Zhifei ; Chen, Handan ; Chai, Kejie ; Xu, Weiming</creatorcontrib><description>Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm
in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules29163734</identifier><identifier>PMID: 39202814</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alcohol ; benzyl alcohol ; Catalytic oxidation ; Electrodes ; Electrolytes ; electrooxidation ; Energy consumption ; Fossil fuels ; Hydrogen production ; Metals ; Morphology ; Nickel ; nickel foam ; Nitrogen ; nitrogen-doped bimetallic oxide electrocatalyst ; Spectrum analysis ; WO-N/NF electrode</subject><ispartof>Molecules (Basel, Switzerland), 2024-08, Vol.29 (16), p.3734</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3098053807/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3098053807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39202814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yizhen</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Zhang, Yuanyao</creatorcontrib><creatorcontrib>Zhu, Zhifei</creatorcontrib><creatorcontrib>Chen, Handan</creatorcontrib><creatorcontrib>Chai, Kejie</creatorcontrib><creatorcontrib>Xu, Weiming</creatorcontrib><title>Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm
in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation.</description><subject>Alcohol</subject><subject>benzyl alcohol</subject><subject>Catalytic oxidation</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>electrooxidation</subject><subject>Energy consumption</subject><subject>Fossil fuels</subject><subject>Hydrogen production</subject><subject>Metals</subject><subject>Morphology</subject><subject>Nickel</subject><subject>nickel foam</subject><subject>Nitrogen</subject><subject>nitrogen-doped bimetallic oxide electrocatalyst</subject><subject>Spectrum analysis</subject><subject>WO-N/NF electrode</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkk9vEzEQxVcIREvhA3BBlrhwWbDX_9YnVKqUVqrSSzlbXu84cXDsYnsR4dOzaUrVwskjz5uf3oxe07wl-COlCn_apgB2ClA6RQSVlD1rjgnrcEsxU88f1UfNq1I2GHeEEf6yOaKqw11P2HEzLX3NaQWxvZniqlSI6PqXHwEtTUyl5snWKUNBKaKlt98hoPNktsgUdOFXa7RwzlsPsaLFbGUmWVNN2JVakEsZfYH4exfQabBpncId2VSf4uvmhTOhwJv796T5dr64Obtor66_Xp6dXrWWSlFbkNYZ40DyUUhGR-WkGowUquesZx2nomfUwuAkx8aO1PCREz7g0fXYCc7pSXN54I7JbPRt9luTdzoZr-8-Ul5pk6u3ATRjjBAlxADOsVFaNTja9Z2QhLGBETmzPh9Yt9OwhdHOS2cTnkCfdqJf61X6qQmhXBIuZsKHe0JOPyYoVW99sRCCiZCmoilWSioqMJ6l7_-RbtKU43yrvarHnPZ4b4kcVDanUjK4BzcE631C9H8JmWfePV7jYeJvJOgf70-63g</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Zhu, Yizhen</creator><creator>Chen, Xiangyu</creator><creator>Zhang, Yuanyao</creator><creator>Zhu, Zhifei</creator><creator>Chen, Handan</creator><creator>Chai, Kejie</creator><creator>Xu, Weiming</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240807</creationdate><title>Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation</title><author>Zhu, Yizhen ; Chen, Xiangyu ; Zhang, Yuanyao ; Zhu, Zhifei ; Chen, Handan ; Chai, Kejie ; Xu, Weiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcohol</topic><topic>benzyl alcohol</topic><topic>Catalytic oxidation</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>electrooxidation</topic><topic>Energy consumption</topic><topic>Fossil fuels</topic><topic>Hydrogen production</topic><topic>Metals</topic><topic>Morphology</topic><topic>Nickel</topic><topic>nickel foam</topic><topic>Nitrogen</topic><topic>nitrogen-doped bimetallic oxide electrocatalyst</topic><topic>Spectrum analysis</topic><topic>WO-N/NF electrode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yizhen</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Zhang, Yuanyao</creatorcontrib><creatorcontrib>Zhu, Zhifei</creatorcontrib><creatorcontrib>Chen, Handan</creatorcontrib><creatorcontrib>Chai, Kejie</creatorcontrib><creatorcontrib>Xu, Weiming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yizhen</au><au>Chen, Xiangyu</au><au>Zhang, Yuanyao</au><au>Zhu, Zhifei</au><au>Chen, Handan</au><au>Chai, Kejie</au><au>Xu, Weiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>29</volume><issue>16</issue><spage>3734</spage><pages>3734-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm
in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39202814</pmid><doi>10.3390/molecules29163734</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2024-08, Vol.29 (16), p.3734 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_44411966beff4d7c9bf328267144b417 |
source | Publicly Available Content Database; PubMed Central |
subjects | Alcohol benzyl alcohol Catalytic oxidation Electrodes Electrolytes electrooxidation Energy consumption Fossil fuels Hydrogen production Metals Morphology Nickel nickel foam Nitrogen nitrogen-doped bimetallic oxide electrocatalyst Spectrum analysis WO-N/NF electrode |
title | Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-Tungsten%20Oxide%20Nanostructures%20on%20Nickel%20Foam%20as%20High%20Efficient%20Electrocatalysts%20for%20Benzyl%20Alcohol%20Oxidation&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Zhu,%20Yizhen&rft.date=2024-08-07&rft.volume=29&rft.issue=16&rft.spage=3734&rft.pages=3734-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules29163734&rft_dat=%3Cproquest_doaj_%3E3098053807%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098053807&rft_id=info:pmid/39202814&rfr_iscdi=true |