Loading…

Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation

Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetall...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2024-08, Vol.29 (16), p.3734
Main Authors: Zhu, Yizhen, Chen, Xiangyu, Zhang, Yuanyao, Zhu, Zhifei, Chen, Handan, Chai, Kejie, Xu, Weiming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553
container_end_page
container_issue 16
container_start_page 3734
container_title Molecules (Basel, Switzerland)
container_volume 29
creator Zhu, Yizhen
Chen, Xiangyu
Zhang, Yuanyao
Zhu, Zhifei
Chen, Handan
Chai, Kejie
Xu, Weiming
description Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation.
doi_str_mv 10.3390/molecules29163734
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_44411966beff4d7c9bf328267144b417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_44411966beff4d7c9bf328267144b417</doaj_id><sourcerecordid>3098053807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553</originalsourceid><addsrcrecordid>eNplkk9vEzEQxVcIREvhA3BBlrhwWbDX_9YnVKqUVqrSSzlbXu84cXDsYnsR4dOzaUrVwskjz5uf3oxe07wl-COlCn_apgB2ClA6RQSVlD1rjgnrcEsxU88f1UfNq1I2GHeEEf6yOaKqw11P2HEzLX3NaQWxvZniqlSI6PqXHwEtTUyl5snWKUNBKaKlt98hoPNktsgUdOFXa7RwzlsPsaLFbGUmWVNN2JVakEsZfYH4exfQabBpncId2VSf4uvmhTOhwJv796T5dr64Obtor66_Xp6dXrWWSlFbkNYZ40DyUUhGR-WkGowUquesZx2nomfUwuAkx8aO1PCREz7g0fXYCc7pSXN54I7JbPRt9luTdzoZr-8-Ul5pk6u3ATRjjBAlxADOsVFaNTja9Z2QhLGBETmzPh9Yt9OwhdHOS2cTnkCfdqJf61X6qQmhXBIuZsKHe0JOPyYoVW99sRCCiZCmoilWSioqMJ6l7_-RbtKU43yrvarHnPZ4b4kcVDanUjK4BzcE631C9H8JmWfePV7jYeJvJOgf70-63g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098053807</pqid></control><display><type>article</type><title>Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhu, Yizhen ; Chen, Xiangyu ; Zhang, Yuanyao ; Zhu, Zhifei ; Chen, Handan ; Chai, Kejie ; Xu, Weiming</creator><creatorcontrib>Zhu, Yizhen ; Chen, Xiangyu ; Zhang, Yuanyao ; Zhu, Zhifei ; Chen, Handan ; Chai, Kejie ; Xu, Weiming</creatorcontrib><description>Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules29163734</identifier><identifier>PMID: 39202814</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alcohol ; benzyl alcohol ; Catalytic oxidation ; Electrodes ; Electrolytes ; electrooxidation ; Energy consumption ; Fossil fuels ; Hydrogen production ; Metals ; Morphology ; Nickel ; nickel foam ; Nitrogen ; nitrogen-doped bimetallic oxide electrocatalyst ; Spectrum analysis ; WO-N/NF electrode</subject><ispartof>Molecules (Basel, Switzerland), 2024-08, Vol.29 (16), p.3734</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3098053807/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3098053807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39202814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yizhen</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Zhang, Yuanyao</creatorcontrib><creatorcontrib>Zhu, Zhifei</creatorcontrib><creatorcontrib>Chen, Handan</creatorcontrib><creatorcontrib>Chai, Kejie</creatorcontrib><creatorcontrib>Xu, Weiming</creatorcontrib><title>Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation.</description><subject>Alcohol</subject><subject>benzyl alcohol</subject><subject>Catalytic oxidation</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>electrooxidation</subject><subject>Energy consumption</subject><subject>Fossil fuels</subject><subject>Hydrogen production</subject><subject>Metals</subject><subject>Morphology</subject><subject>Nickel</subject><subject>nickel foam</subject><subject>Nitrogen</subject><subject>nitrogen-doped bimetallic oxide electrocatalyst</subject><subject>Spectrum analysis</subject><subject>WO-N/NF electrode</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkk9vEzEQxVcIREvhA3BBlrhwWbDX_9YnVKqUVqrSSzlbXu84cXDsYnsR4dOzaUrVwskjz5uf3oxe07wl-COlCn_apgB2ClA6RQSVlD1rjgnrcEsxU88f1UfNq1I2GHeEEf6yOaKqw11P2HEzLX3NaQWxvZniqlSI6PqXHwEtTUyl5snWKUNBKaKlt98hoPNktsgUdOFXa7RwzlsPsaLFbGUmWVNN2JVakEsZfYH4exfQabBpncId2VSf4uvmhTOhwJv796T5dr64Obtor66_Xp6dXrWWSlFbkNYZ40DyUUhGR-WkGowUquesZx2nomfUwuAkx8aO1PCREz7g0fXYCc7pSXN54I7JbPRt9luTdzoZr-8-Ul5pk6u3ATRjjBAlxADOsVFaNTja9Z2QhLGBETmzPh9Yt9OwhdHOS2cTnkCfdqJf61X6qQmhXBIuZsKHe0JOPyYoVW99sRCCiZCmoilWSioqMJ6l7_-RbtKU43yrvarHnPZ4b4kcVDanUjK4BzcE631C9H8JmWfePV7jYeJvJOgf70-63g</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Zhu, Yizhen</creator><creator>Chen, Xiangyu</creator><creator>Zhang, Yuanyao</creator><creator>Zhu, Zhifei</creator><creator>Chen, Handan</creator><creator>Chai, Kejie</creator><creator>Xu, Weiming</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240807</creationdate><title>Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation</title><author>Zhu, Yizhen ; Chen, Xiangyu ; Zhang, Yuanyao ; Zhu, Zhifei ; Chen, Handan ; Chai, Kejie ; Xu, Weiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcohol</topic><topic>benzyl alcohol</topic><topic>Catalytic oxidation</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>electrooxidation</topic><topic>Energy consumption</topic><topic>Fossil fuels</topic><topic>Hydrogen production</topic><topic>Metals</topic><topic>Morphology</topic><topic>Nickel</topic><topic>nickel foam</topic><topic>Nitrogen</topic><topic>nitrogen-doped bimetallic oxide electrocatalyst</topic><topic>Spectrum analysis</topic><topic>WO-N/NF electrode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yizhen</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Zhang, Yuanyao</creatorcontrib><creatorcontrib>Zhu, Zhifei</creatorcontrib><creatorcontrib>Chen, Handan</creatorcontrib><creatorcontrib>Chai, Kejie</creatorcontrib><creatorcontrib>Xu, Weiming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yizhen</au><au>Chen, Xiangyu</au><au>Zhang, Yuanyao</au><au>Zhu, Zhifei</au><au>Chen, Handan</au><au>Chai, Kejie</au><au>Xu, Weiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>29</volume><issue>16</issue><spage>3734</spage><pages>3734-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Electrocatalytic alcohol oxidation (EAO) is an attractive alternative to the sluggish oxygen evolution reaction in electrochemical hydrogen evolution cells. However, the development of high-performance bifunctional electrocatalysts is a major challenge. Herein, we developed a nitrogen-doped bimetallic oxide electrocatalyst (WO-N/NF) by a one-step hydrothermal method for the selective electrooxidation of benzyl alcohol to benzoic acid in alkaline electrolytes. The WO-N/NF electrode features block-shaped particles on a rough, inhomogeneous surface with cracks and lumpy nodules, increasing active sites and enhancing electrolyte diffusion. The electrode demonstrates exceptional activity, stability, and selectivity, achieving efficient benzoic acid production while reducing the electrolysis voltage. A low onset potential of 1.38 V (vs. RHE) is achieved to reach a current density of 100 mA cm in 1.0 M KOH electrolyte with only 0.2 mmol of metal precursors, which is 396 mV lower than that of water oxidation. The analysis reveals a yield, conversion, and selectivity of 98.41%, 99.66%, and 99.74%, respectively, with a Faradaic efficiency of 98.77%. This work provides insight into the rational design of a highly active and selective catalyst for electrocatalytic alcohol oxidation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39202814</pmid><doi>10.3390/molecules29163734</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2024-08, Vol.29 (16), p.3734
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_44411966beff4d7c9bf328267144b417
source Publicly Available Content Database; PubMed Central
subjects Alcohol
benzyl alcohol
Catalytic oxidation
Electrodes
Electrolytes
electrooxidation
Energy consumption
Fossil fuels
Hydrogen production
Metals
Morphology
Nickel
nickel foam
Nitrogen
nitrogen-doped bimetallic oxide electrocatalyst
Spectrum analysis
WO-N/NF electrode
title Nitrogen-Tungsten Oxide Nanostructures on Nickel Foam as High Efficient Electrocatalysts for Benzyl Alcohol Oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-Tungsten%20Oxide%20Nanostructures%20on%20Nickel%20Foam%20as%20High%20Efficient%20Electrocatalysts%20for%20Benzyl%20Alcohol%20Oxidation&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Zhu,%20Yizhen&rft.date=2024-08-07&rft.volume=29&rft.issue=16&rft.spage=3734&rft.pages=3734-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules29163734&rft_dat=%3Cproquest_doaj_%3E3098053807%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-e7cfaafe75d6743d9f79ba769854842536843cebf750acd3a5d515b0df80f6553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098053807&rft_id=info:pmid/39202814&rfr_iscdi=true