Loading…

Mapping Plant Species in a Former Industrial Site Using Airborne Hyperspectral and Time Series of Sentinel-2 Data Sets

Industrial activities induce various impacts on ecosystems that influence species richness and distribution. An effective way to assess the resulting impacts on biodiversity lies in vegetation mapping. Species classification achieved through supervised machine learning algorithms at the pixel level...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-08, Vol.14 (15), p.3633
Main Authors: Gimenez, Rollin, Lassalle, Guillaume, Elger, Arnaud, Dubucq, Dominique, Credoz, Anthony, Fabre, Sophie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Industrial activities induce various impacts on ecosystems that influence species richness and distribution. An effective way to assess the resulting impacts on biodiversity lies in vegetation mapping. Species classification achieved through supervised machine learning algorithms at the pixel level has shown promising results using hyperspectral images and multispectral, multitemporal images. This study aims to determine whether airborne hyperspectral images with a high spatial resolution or phenological information obtained by spaceborne multispectral time series (Sentinel-2) are suitable to discriminate species and assess biodiversity in a complex impacted context. The industrial heritage of the study site has indeed induced high spatial heterogeneity in terms of stressors and species over a reduced scale. First, vegetation indices, derivative spectra, continuum removed spectra, and components provided by three feature extraction techniques, namely, Principal Component Analysis, Minimal Noise Fraction, and Independent Component Analysis, were calculated from reflectance spectra. These features were then analyzed through Sequential Floating Feature Selection. Supervised classification was finally performed using various machine learning algorithms (Random Forest, Support Vector Machines, and Regularized Logistic Regression) considering a probability-based rejection approach. Biodiversity metrics were derived from resulted maps and analyzed considering the impacts. Average Overall Accuracy (AOA) reached up to 94% using the hyperspectral image and Regularized Logistic Regression algorithm, whereas the time series of multispectral images never exceeded 72% AOA. From all tested spectral transformations, only vegetation indices applied to the time series of multispectral images increased the performance. The results obtained with the hyperspectral image degraded to the specifications of Sentinel-2 emphasize the importance of fine spatial and spectral resolutions to achieve accurate mapping in this complex context. While no significant difference was found between impacted and reference sites through biodiversity metrics, vegetation mapping highlighted some differences in species distribution.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14153633