Loading…

High-Order Compact Difference Method for Solving Two- and Three-Dimensional Unsteady Convection Diffusion Reaction Equations

In this paper, a type of high-order compact (HOC) finite difference method is developed for solving two- and three-dimensional unsteady convection diffusion reaction (CDR) equations with variable coefficients. Firstly, an HOC difference scheme is derived to solve the two-dimensional (2D) unsteady CD...

Full description

Saved in:
Bibliographic Details
Published in:Axioms 2022-03, Vol.11 (3), p.111
Main Authors: Wei, Jianying, Ge, Yongbin, Wang, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a type of high-order compact (HOC) finite difference method is developed for solving two- and three-dimensional unsteady convection diffusion reaction (CDR) equations with variable coefficients. Firstly, an HOC difference scheme is derived to solve the two-dimensional (2D) unsteady CDR equation. Discretization in time is carried out by Taylor series expansion and correction of the truncation error remainder, while discretization in space is based on the fourth-order compact difference formulas. The scheme is second-order accuracy in time and fourth-order accuracy in space. The unconditional stability is obtained by the von Neumann analysis method. Then, this scheme is extended to solve the three-dimensional (3D) unsteady CDR equation. It needs only a five-point stencil for 2D problems and a seven-point stencil for 3D problems. Moreover, the present schemes can solve the nonlinear Burgers equation. Finally, numerical experiments are conducted to show the good performances of the new schemes.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms11030111