Loading…
Approximation of Probabilistic Maximal Frequent Itemset Mining Over Uncertain Sensed Data
Event detection by discovering frequent itemsets is very popular in sensor network communities. However, the recorded data is often a probability rather than a determined value in a really productive environment as sensed data is often affected by noise. In this paper, we study to detect events by f...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.97529-97539 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Event detection by discovering frequent itemsets is very popular in sensor network communities. However, the recorded data is often a probability rather than a determined value in a really productive environment as sensed data is often affected by noise. In this paper, we study to detect events by finding frequent patterns over probabilistic sensor data under the Possible World Semantics . This is technically challenging as probabilistic records can generate an exponential number of possible worlds. Although several efficient algorithms are proposed in the literature, it is still difficult to mine probabilistic maximal frequent items (PMFIs) in large uncertain database due to the high time complexity. To address this issue, we employ approximate idea to further reduce the time complexity from O(nlogn) to O(n) and propose a two-step solution (Aproximation Probabilistic Frequent Itemset-MAX, APFI-MAX in short) including PMFI candidates generation and PMFIs confirmation. We also provide the necessary proofs of our approximation method to make APFI-MAX more solid and convincing. Finally, extensive experiments have been conducted on synthetic and real databases, demonstrating that the proposed APFI-MAX always running faster than state-of-art methods under different parameter settings. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2997409 |