Loading…

Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy

Reconfigurable field-effect transistors (R-FETs) that can dynamically reconfigure the transistor polarity, from n-type to p-type channel or vice versa, represent a promising new approach to reduce the logic complexity and granularity of programmable electronics. Although R-FETs have been successfull...

Full description

Saved in:
Bibliographic Details
Published in:Chip (Hong Kong) 2024-09, Vol.3 (3), p.100098, Article 100098
Main Authors: Qian, Wentao, Wang, Junzhuan, Xu, Jun, Yu, Linwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reconfigurable field-effect transistors (R-FETs) that can dynamically reconfigure the transistor polarity, from n-type to p-type channel or vice versa, represent a promising new approach to reduce the logic complexity and granularity of programmable electronics. Although R-FETs have been successfully demonstrated upon silicon nanowire (SiNW) channels, a pair of extra program gates is still needed to control the source/drain (S/D) contacts. In this work, we propose a rather simple single gate R-FET structure with an asymmetric S/D electrode contact, where the FET channel polarity can be altered by changing the sign of channel bias Vds. These R-FETs were fabricated upon an orderly array of planar SiNW channels, grown via in-plane solid-liquid-solid mechanism, and contacted by Ti/Al and Pt/Au at the S/D electrodes, respectively. Remarkably, this channel-bias-controlled R-FET strategy has been successfully testified and implemented upon both p-type-doped (with indium dopants) or n-type-doped (phosphorus) SiNW channels, whereas the R-FET prototypes demonstrate an impressive high Ion/off ratio of > 106 and a steep subthreshold swing of 79 mV/dec. These results indicate a rather simple, compact and generic enough R-FET strategy for the construction of a new generation of SiNW-based programmable and low-power electronics. [Display omitted]
ISSN:2709-4723
DOI:10.1016/j.chip.2024.100098