Loading…
Inversion of Tridiagonal Matrices Using the Dunford-Taylor’s Integral
We show that using Dunford-Taylor’s integral, a classical tool of functional analysis, it is possible to derive an expression for the inverse of a general non-singular complex-valued tridiagonal matrix. The special cases of Jacobi’s symmetric and Toeplitz (in particular symmetric Toeplitz) matrices...
Saved in:
Published in: | Symmetry (Basel) 2021-05, Vol.13 (5), p.870 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that using Dunford-Taylor’s integral, a classical tool of functional analysis, it is possible to derive an expression for the inverse of a general non-singular complex-valued tridiagonal matrix. The special cases of Jacobi’s symmetric and Toeplitz (in particular symmetric Toeplitz) matrices are included. The proposed method does not require the knowledge of the matrix eigenvalues and relies only on the relevant invariants which are determined, in a computationally effective way, by means of a dedicated recursive procedure. The considered technique has been validated through several test cases with the aid of the computer algebra program Mathematica©. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym13050870 |