Loading…

An improved automated diatom detection method based on YOLOv5 framework and its preliminary study for taxonomy recognition in the forensic diatom test

The diatom test is a forensic technique that can provide supportive evidence in the diagnosis of drowning but requires the laborious observation and counting of diatoms using a microscopy with too much effort, and therefore it is promising to introduce artificial intelligence (AI) to make the test p...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in microbiology 2022-08, Vol.13, p.963059
Main Authors: Yu, Weimin, Xiang, Qingqing, Hu, Yingchao, Du, Yukun, Kang, Xiaodong, Zheng, Dongyun, Shi, He, Xu, Quyi, Li, Zhigang, Niu, Yong, Liu, Chao, Zhao, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-3064dd2bb9e5d3719e5d7a1353f1c149d5470e86e12e348ff39f68d9bc37961a3
cites cdi_FETCH-LOGICAL-c465t-3064dd2bb9e5d3719e5d7a1353f1c149d5470e86e12e348ff39f68d9bc37961a3
container_end_page
container_issue
container_start_page 963059
container_title Frontiers in microbiology
container_volume 13
creator Yu, Weimin
Xiang, Qingqing
Hu, Yingchao
Du, Yukun
Kang, Xiaodong
Zheng, Dongyun
Shi, He
Xu, Quyi
Li, Zhigang
Niu, Yong
Liu, Chao
Zhao, Jian
description The diatom test is a forensic technique that can provide supportive evidence in the diagnosis of drowning but requires the laborious observation and counting of diatoms using a microscopy with too much effort, and therefore it is promising to introduce artificial intelligence (AI) to make the test process automatic. In this article, we propose an artificial intelligence solution based on the YOLOv5 framework for the automatic detection and recognition of the diatom genera. To evaluate the performance of this AI solution in different scenarios, we collected five lab-grown diatom genera and samples of some organic tissues from drowning cases to investigate the potential upper/lower limits of the capability in detecting the diatoms and recognizing their genera. Based on the study of the article, a recall score of 0.95 together with the corresponding precision score of 0.9 were achieved on the samples of the five lab-grown diatom genera cross-validation, and the accuracy of the evaluation in the cases of kidney and liver is above 0.85 based on the precision and recall scores, which demonstrate the effectiveness of the AI solution to be used in drowning forensic routine.
doi_str_mv 10.3389/fmicb.2022.963059
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4746fc22bf3f4da399e8469f0aa53c4e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4746fc22bf3f4da399e8469f0aa53c4e</doaj_id><sourcerecordid>2709914716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-3064dd2bb9e5d3719e5d7a1353f1c149d5470e86e12e348ff39f68d9bc37961a3</originalsourceid><addsrcrecordid>eNpVks1uEzEQx1cIRKvSB-CCfOSS1F_rjS9IVQW0UqRcQIKT5bXHicuuHWxvIC_C8-IkbdX64Bl7Zn4ztv5N857gOWMLeeVGb_o5xZTOpWC4la-acyIEnzFMf7x-5p81lznf47o4pnV_25wxgQXuBDlv_l0H5MdtijuwSE8ljrpUz3pdXWShgCk-BjRC2USLep1rtJ5_rparXYtc0iP8iekX0sEiXzLaJhj86INOe5TLZPfIxYSK_htDHPcogYnr4I9MH1DZwCEOIXvz2LRALu-aN04PGS4f7EXz_cvnbze3s-Xq693N9XJmuGhLfZ7g1tK-l9Ba1pGD6TRhLXPEEC5tyzsMCwGEAuML55h0YmFlb1gnBdHsork7cW3U92qb_FjnVlF7dbyIaa10Kt4MoHjHhTOU9o45bjWTEhZcSIe1bpnhUFmfTqzt1I9gDYSS9PAC-jIS_Eat405JzroO0wr4-ABI8fdUf0GNPhsYBh0gTlnRDktJeEdETSWnVJNizgncUxuC1UEe6igPdZCHOsmj1nx4Pt9TxaMY2H_XQbsR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709914716</pqid></control><display><type>article</type><title>An improved automated diatom detection method based on YOLOv5 framework and its preliminary study for taxonomy recognition in the forensic diatom test</title><source>PubMed Central</source><creator>Yu, Weimin ; Xiang, Qingqing ; Hu, Yingchao ; Du, Yukun ; Kang, Xiaodong ; Zheng, Dongyun ; Shi, He ; Xu, Quyi ; Li, Zhigang ; Niu, Yong ; Liu, Chao ; Zhao, Jian</creator><creatorcontrib>Yu, Weimin ; Xiang, Qingqing ; Hu, Yingchao ; Du, Yukun ; Kang, Xiaodong ; Zheng, Dongyun ; Shi, He ; Xu, Quyi ; Li, Zhigang ; Niu, Yong ; Liu, Chao ; Zhao, Jian</creatorcontrib><description>The diatom test is a forensic technique that can provide supportive evidence in the diagnosis of drowning but requires the laborious observation and counting of diatoms using a microscopy with too much effort, and therefore it is promising to introduce artificial intelligence (AI) to make the test process automatic. In this article, we propose an artificial intelligence solution based on the YOLOv5 framework for the automatic detection and recognition of the diatom genera. To evaluate the performance of this AI solution in different scenarios, we collected five lab-grown diatom genera and samples of some organic tissues from drowning cases to investigate the potential upper/lower limits of the capability in detecting the diatoms and recognizing their genera. Based on the study of the article, a recall score of 0.95 together with the corresponding precision score of 0.9 were achieved on the samples of the five lab-grown diatom genera cross-validation, and the accuracy of the evaluation in the cases of kidney and liver is above 0.85 based on the precision and recall scores, which demonstrate the effectiveness of the AI solution to be used in drowning forensic routine.</description><identifier>ISSN: 1664-302X</identifier><identifier>EISSN: 1664-302X</identifier><identifier>DOI: 10.3389/fmicb.2022.963059</identifier><identifier>PMID: 36060761</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>artificial intelligence ; diatom test ; drowning ; forensic science ; Microbiology ; microwave digestion-vacuum filtration-automated scanning electron microscopy ; YOLOv5 framework</subject><ispartof>Frontiers in microbiology, 2022-08, Vol.13, p.963059</ispartof><rights>Copyright © 2022 Yu, Xiang, Hu, Du, Kang, Zheng, Shi, Xu, Li, Niu, Liu and Zhao.</rights><rights>Copyright © 2022 Yu, Xiang, Hu, Du, Kang, Zheng, Shi, Xu, Li, Niu, Liu and Zhao. 2022 Yu, Xiang, Hu, Du, Kang, Zheng, Shi, Xu, Li, Niu, Liu and Zhao</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-3064dd2bb9e5d3719e5d7a1353f1c149d5470e86e12e348ff39f68d9bc37961a3</citedby><cites>FETCH-LOGICAL-c465t-3064dd2bb9e5d3719e5d7a1353f1c149d5470e86e12e348ff39f68d9bc37961a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437702/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437702/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36060761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Weimin</creatorcontrib><creatorcontrib>Xiang, Qingqing</creatorcontrib><creatorcontrib>Hu, Yingchao</creatorcontrib><creatorcontrib>Du, Yukun</creatorcontrib><creatorcontrib>Kang, Xiaodong</creatorcontrib><creatorcontrib>Zheng, Dongyun</creatorcontrib><creatorcontrib>Shi, He</creatorcontrib><creatorcontrib>Xu, Quyi</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Niu, Yong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><title>An improved automated diatom detection method based on YOLOv5 framework and its preliminary study for taxonomy recognition in the forensic diatom test</title><title>Frontiers in microbiology</title><addtitle>Front Microbiol</addtitle><description>The diatom test is a forensic technique that can provide supportive evidence in the diagnosis of drowning but requires the laborious observation and counting of diatoms using a microscopy with too much effort, and therefore it is promising to introduce artificial intelligence (AI) to make the test process automatic. In this article, we propose an artificial intelligence solution based on the YOLOv5 framework for the automatic detection and recognition of the diatom genera. To evaluate the performance of this AI solution in different scenarios, we collected five lab-grown diatom genera and samples of some organic tissues from drowning cases to investigate the potential upper/lower limits of the capability in detecting the diatoms and recognizing their genera. Based on the study of the article, a recall score of 0.95 together with the corresponding precision score of 0.9 were achieved on the samples of the five lab-grown diatom genera cross-validation, and the accuracy of the evaluation in the cases of kidney and liver is above 0.85 based on the precision and recall scores, which demonstrate the effectiveness of the AI solution to be used in drowning forensic routine.</description><subject>artificial intelligence</subject><subject>diatom test</subject><subject>drowning</subject><subject>forensic science</subject><subject>Microbiology</subject><subject>microwave digestion-vacuum filtration-automated scanning electron microscopy</subject><subject>YOLOv5 framework</subject><issn>1664-302X</issn><issn>1664-302X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVks1uEzEQx1cIRKvSB-CCfOSS1F_rjS9IVQW0UqRcQIKT5bXHicuuHWxvIC_C8-IkbdX64Bl7Zn4ztv5N857gOWMLeeVGb_o5xZTOpWC4la-acyIEnzFMf7x-5p81lznf47o4pnV_25wxgQXuBDlv_l0H5MdtijuwSE8ljrpUz3pdXWShgCk-BjRC2USLep1rtJ5_rparXYtc0iP8iekX0sEiXzLaJhj86INOe5TLZPfIxYSK_htDHPcogYnr4I9MH1DZwCEOIXvz2LRALu-aN04PGS4f7EXz_cvnbze3s-Xq693N9XJmuGhLfZ7g1tK-l9Ba1pGD6TRhLXPEEC5tyzsMCwGEAuML55h0YmFlb1gnBdHsork7cW3U92qb_FjnVlF7dbyIaa10Kt4MoHjHhTOU9o45bjWTEhZcSIe1bpnhUFmfTqzt1I9gDYSS9PAC-jIS_Eat405JzroO0wr4-ABI8fdUf0GNPhsYBh0gTlnRDktJeEdETSWnVJNizgncUxuC1UEe6igPdZCHOsmj1nx4Pt9TxaMY2H_XQbsR</recordid><startdate>20220819</startdate><enddate>20220819</enddate><creator>Yu, Weimin</creator><creator>Xiang, Qingqing</creator><creator>Hu, Yingchao</creator><creator>Du, Yukun</creator><creator>Kang, Xiaodong</creator><creator>Zheng, Dongyun</creator><creator>Shi, He</creator><creator>Xu, Quyi</creator><creator>Li, Zhigang</creator><creator>Niu, Yong</creator><creator>Liu, Chao</creator><creator>Zhao, Jian</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220819</creationdate><title>An improved automated diatom detection method based on YOLOv5 framework and its preliminary study for taxonomy recognition in the forensic diatom test</title><author>Yu, Weimin ; Xiang, Qingqing ; Hu, Yingchao ; Du, Yukun ; Kang, Xiaodong ; Zheng, Dongyun ; Shi, He ; Xu, Quyi ; Li, Zhigang ; Niu, Yong ; Liu, Chao ; Zhao, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-3064dd2bb9e5d3719e5d7a1353f1c149d5470e86e12e348ff39f68d9bc37961a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial intelligence</topic><topic>diatom test</topic><topic>drowning</topic><topic>forensic science</topic><topic>Microbiology</topic><topic>microwave digestion-vacuum filtration-automated scanning electron microscopy</topic><topic>YOLOv5 framework</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Weimin</creatorcontrib><creatorcontrib>Xiang, Qingqing</creatorcontrib><creatorcontrib>Hu, Yingchao</creatorcontrib><creatorcontrib>Du, Yukun</creatorcontrib><creatorcontrib>Kang, Xiaodong</creatorcontrib><creatorcontrib>Zheng, Dongyun</creatorcontrib><creatorcontrib>Shi, He</creatorcontrib><creatorcontrib>Xu, Quyi</creatorcontrib><creatorcontrib>Li, Zhigang</creatorcontrib><creatorcontrib>Niu, Yong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Zhao, Jian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Weimin</au><au>Xiang, Qingqing</au><au>Hu, Yingchao</au><au>Du, Yukun</au><au>Kang, Xiaodong</au><au>Zheng, Dongyun</au><au>Shi, He</au><au>Xu, Quyi</au><au>Li, Zhigang</au><au>Niu, Yong</au><au>Liu, Chao</au><au>Zhao, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved automated diatom detection method based on YOLOv5 framework and its preliminary study for taxonomy recognition in the forensic diatom test</atitle><jtitle>Frontiers in microbiology</jtitle><addtitle>Front Microbiol</addtitle><date>2022-08-19</date><risdate>2022</risdate><volume>13</volume><spage>963059</spage><pages>963059-</pages><issn>1664-302X</issn><eissn>1664-302X</eissn><abstract>The diatom test is a forensic technique that can provide supportive evidence in the diagnosis of drowning but requires the laborious observation and counting of diatoms using a microscopy with too much effort, and therefore it is promising to introduce artificial intelligence (AI) to make the test process automatic. In this article, we propose an artificial intelligence solution based on the YOLOv5 framework for the automatic detection and recognition of the diatom genera. To evaluate the performance of this AI solution in different scenarios, we collected five lab-grown diatom genera and samples of some organic tissues from drowning cases to investigate the potential upper/lower limits of the capability in detecting the diatoms and recognizing their genera. Based on the study of the article, a recall score of 0.95 together with the corresponding precision score of 0.9 were achieved on the samples of the five lab-grown diatom genera cross-validation, and the accuracy of the evaluation in the cases of kidney and liver is above 0.85 based on the precision and recall scores, which demonstrate the effectiveness of the AI solution to be used in drowning forensic routine.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>36060761</pmid><doi>10.3389/fmicb.2022.963059</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-302X
ispartof Frontiers in microbiology, 2022-08, Vol.13, p.963059
issn 1664-302X
1664-302X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4746fc22bf3f4da399e8469f0aa53c4e
source PubMed Central
subjects artificial intelligence
diatom test
drowning
forensic science
Microbiology
microwave digestion-vacuum filtration-automated scanning electron microscopy
YOLOv5 framework
title An improved automated diatom detection method based on YOLOv5 framework and its preliminary study for taxonomy recognition in the forensic diatom test
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20automated%20diatom%20detection%20method%20based%20on%20YOLOv5%20framework%20and%20its%20preliminary%20study%20for%20taxonomy%20recognition%20in%20the%20forensic%20diatom%20test&rft.jtitle=Frontiers%20in%20microbiology&rft.au=Yu,%20Weimin&rft.date=2022-08-19&rft.volume=13&rft.spage=963059&rft.pages=963059-&rft.issn=1664-302X&rft.eissn=1664-302X&rft_id=info:doi/10.3389/fmicb.2022.963059&rft_dat=%3Cproquest_doaj_%3E2709914716%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-3064dd2bb9e5d3719e5d7a1353f1c149d5470e86e12e348ff39f68d9bc37961a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709914716&rft_id=info:pmid/36060761&rfr_iscdi=true