Loading…
Assessing the impact of different contact patterns on disease transmission: Taking COVID-19 as a case
Human-to-human contact plays a leading role in the transmission of infectious diseases, and the contact pattern between individuals has an important influence on the intensity and trend of disease transmission. In this paper, we define regular contacts and random contacts. Then, taking the COVID-19...
Saved in:
Published in: | PloS one 2024-04, Vol.19 (4), p.e0300884 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human-to-human contact plays a leading role in the transmission of infectious diseases, and the contact pattern between individuals has an important influence on the intensity and trend of disease transmission. In this paper, we define regular contacts and random contacts. Then, taking the COVID-19 outbreak in Yangzhou City, China as an example, we consider age heterogeneity, household structure and two contact patterns to establish discrete dynamic models with switching between daytime and nighttime to depict the transmission mechanism of COVID-19 in population. We studied the changes in the reproduction number with different age groups and household sizes at different stages. The effects of the proportion of two contacts patterns on reproduction number were also studied. Furthermore, taking the final size, the peak value of infected individuals in community and the peak value of quarantine infected individuals and nucleic acid test positive individuals as indicators, we evaluate the impact of the number of random contacts, the duration of the free transmission stage and summer vacation on the spread of the disease. The results show that a series of prevention and control measures taken by the Chinese government in response to the epidemic situation are reasonable and effective, and the young and middle-aged adults (aged 18-59) with household size of 6 have the strongest transmission ability. In addition, the results also indicate that increasing the proportion of random contact is beneficial to the control of the infectious disease in the phase with interventions. This work enriches the content of infectious disease modeling and provides theoretical guidance for the prevention and control of follow-up major infectious diseases. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0300884 |