Loading…
On the multi-domain compact finite difference relaxation method for high dimensional chaos: The nine-dimensional Lorenz system
In this paper, we implement the multidomain compact finite difference method to numerically study high dimensional chaos by considering the nine-dimensional Lorenz system. Most of the existing numerical methods converge slowly for this kind of problems and this results in inaccurate approximations....
Saved in:
Published in: | Alexandria engineering journal 2020-08, Vol.59 (4), p.2617-2625 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we implement the multidomain compact finite difference method to numerically study high dimensional chaos by considering the nine-dimensional Lorenz system. Most of the existing numerical methods converge slowly for this kind of problems and this results in inaccurate approximations. Though highly accurate, the compact finite difference method becomes less accurate for problems characterized by chaotic solutions, even with an increase in the number of grid points. As a result, in this work, we adopt the multidomain approach. This approach remarkably improves the results as well as the efficiency of the method. |
---|---|
ISSN: | 1110-0168 |
DOI: | 10.1016/j.aej.2020.04.025 |