Loading…
A Novel Nonlinear Pseudorandom Sequence Generator for the Fractal Function
A pseudorandom sequence is a repeatable sequence with random statistical properties that is widely used in communication encryption, authentication and channel coding. The pseudorandom sequence generator based on the linear feedback shift register has the problem of a fixed sequence, which is easily...
Saved in:
Published in: | Fractal and fractional 2022-10, Vol.6 (10), p.589 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A pseudorandom sequence is a repeatable sequence with random statistical properties that is widely used in communication encryption, authentication and channel coding. The pseudorandom sequence generator based on the linear feedback shift register has the problem of a fixed sequence, which is easily tracked. Existing methods use the secret linear feedback shift register (LFSR) and built-in multiple LFSRs and is difficult to prevent cracking based on the hardware analysis. Since the plaintext depends on a specific language to be generated, using pseudo-random sequence encryption, it faces the problem that the encryptor cannot hide the characteristics of the plaintext data. Fractal functions have the following properties: chaotic, unpredictable and random. We propose a novel pseudorandom sequence generator based on the nonlinear chaotic systems, which is constructed by the fractal function. Furthermore, we design a data processing matrix to hide the data characteristics of the sequence and enhance the randomness. In the experiment, the pseudo-random sequences generator passed 16 rigorous test items from the National Institute of Standards and Technology (NIST), which means that the nonlinear pseudorandom sequence generator for the fractal function is effective and efficient. |
---|---|
ISSN: | 2504-3110 2504-3110 |
DOI: | 10.3390/fractalfract6100589 |