Loading…
Eye tracking based dyslexia detection using a holistic approach
A new detection method for cognitive impairments is presented utilizing an eye tracking signals in a text reading test. This research enhances published articles that extract combination of various features. It does so by processing entire eye-tracking records either in time or frequency whereas app...
Saved in:
Published in: | Scientific reports 2021-08, Vol.11 (1), p.15687-15687, Article 15687 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new detection method for cognitive impairments is presented utilizing an eye tracking signals in a text reading test. This research enhances published articles that extract combination of various features. It does so by processing entire eye-tracking records either in time or frequency whereas applying only basic signal pre-processing. Such signals were classified as a whole by Convolutional Neural Networks (CNN) that hierarchically extract substantial features scatter either in time or frequency and nonlinearly binds them using machine learning to minimize a detection error. In the experiments we used a 100 fold cross validation and a dataset containing signals of 185 subjects (88 subjects with low risk and 97 subjects with high risk of dyslexia). In a series of experiments it was found that magnitude spectrum based representation of time interpolated eye-tracking signals recorded the best results, i.e. an average accuracy of 96.6% was reached in comparison to 95.6% that is the best published result on the same database. These findings suggest that a holistic approach involving small but complex enough CNNs applied to properly pre-process and expressed signals provides even better results than a combination of meticulously selected well-known features. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-95275-1 |