Loading…
Linear difference equations, frieze patterns, and the combinatorial Gale transform
We study the space of linear difference equations with periodic coefficients and (anti)periodic solutions. We show that this space is isomorphic to the space of tame frieze patterns and closely related to the moduli space of configurations of points in the projective space. We define the notion of a...
Saved in:
Published in: | Forum of mathematics. Sigma 2014-08, Vol.2, Article e22 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the space of linear difference equations with periodic coefficients and (anti)periodic solutions. We show that this space is isomorphic to the space of tame frieze patterns and closely related to the moduli space of configurations of points in the projective space. We define the notion of a combinatorial Gale transform, which is a duality between periodic difference equations of different orders. We describe periodic rational maps generalizing the classical Gauss map. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2014.20 |