Loading…

Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog , and a quiescent, activatable state in a slowly growing adult salamander , the Axolotl. Epe...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cellular neuroscience 2018-02, Vol.12, p.45-45
Main Authors: Chernoff, Ellen A G, Sato, Kazuna, Salfity, Hai V N, Sarria, Deborah A, Belecky-Adams, Teri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483
cites cdi_FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483
container_end_page 45
container_issue
container_start_page 45
container_title Frontiers in cellular neuroscience
container_volume 12
creator Chernoff, Ellen A G
Sato, Kazuna
Salfity, Hai V N
Sarria, Deborah A
Belecky-Adams, Teri
description The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog , and a quiescent, activatable state in a slowly growing adult salamander , the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. and isoforms were cloned for the Axolotl as well as previously unknown isoforms of . Intact spinal cord ependymal cells show a loss of expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth , the cells are proliferative and maintain expression. Non-regeneration competent ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression and is a strong indicator of regeneration competence in the amphibian spinal cord.
doi_str_mv 10.3389/fncel.2018.00045
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4b1b89c61fed495ab55b3c9036c1ec5b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b1b89c61fed495ab55b3c9036c1ec5b</doaj_id><sourcerecordid>2282128021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhi1UVGjonVO1EhcuScefsS-VUETbSFQgQaXeLK_Xho2c9WLvIvLv6yQUQU8z43nn1YwfhE4xzCiV6qvvrAszAljOAIDxA3SMhSBTjoF8eJMfoU85rwAEEUx-REdEccoFhmO0_DVmkx_aynRNdRNMHlrbDpsq-uqP62I_5l3n4jmGOITqtm87E6pFTE112buu2ay3pQshn6BDb0J2n1_iBP3-fnm3-Dm9uv6xXFxcTS1TMEwZaxSVmHkyF3NVey8YL3sRKilgx41QNbbYSy-NqhvGGPeUM8ftHJSSTNIJWu59m2hWuk_t2qSNjqbVu4eY7rVJ5YrgNKtxLZUV2LuGKW5qzmtqFVBhsbMln6Bve69-rNeusa4bkgnvTN93uvZB38cnzSXlQFkxOH8xSPFxdHnQ6zYXJsF0Lo5ZFzR0LoVkokjP_pOu4pjKbxYVkQQTCQQXFexVNsWck_Ovy2DQW-Z6x3xrLPWOeRn58vaI14F_kOlfYuam4w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282128021</pqid></control><display><type>article</type><title>Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chernoff, Ellen A G ; Sato, Kazuna ; Salfity, Hai V N ; Sarria, Deborah A ; Belecky-Adams, Teri</creator><creatorcontrib>Chernoff, Ellen A G ; Sato, Kazuna ; Salfity, Hai V N ; Sarria, Deborah A ; Belecky-Adams, Teri</creatorcontrib><description>The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog , and a quiescent, activatable state in a slowly growing adult salamander , the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. and isoforms were cloned for the Axolotl as well as previously unknown isoforms of . Intact spinal cord ependymal cells show a loss of expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth , the cells are proliferative and maintain expression. Non-regeneration competent ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression and is a strong indicator of regeneration competence in the amphibian spinal cord.</description><identifier>ISSN: 1662-5102</identifier><identifier>EISSN: 1662-5102</identifier><identifier>DOI: 10.3389/fncel.2018.00045</identifier><identifier>PMID: 29535610</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Ambystoma mexicanum ; Axolotl regeneration ; Biology ; Cell differentiation ; Developmental stages ; Embryos ; Ependymal cells ; Epidermal growth factor ; Epithelium ; Extracellular matrix ; Gene expression ; Hybridization ; Immunohistochemistry ; Isoforms ; Mesenchyme ; Molecular weight ; Morphology ; mRNA ; musashi-1 ; musashi-2 ; Nervous system ; Neurogenesis ; Neuroscience ; Polymerase chain reaction ; Progenitor cells ; Regeneration ; Reptiles &amp; amphibians ; Signal transduction ; Spinal cord injuries ; spinal cord regeneration ; Spinal plasticity ; Stem cells ; Toads ; Xenopus ; Xenopus regeneration</subject><ispartof>Frontiers in cellular neuroscience, 2018-02, Vol.12, p.45-45</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2018 Chernoff, Sato, Salfity, Sarria and Belecky-Adams. 2018 Chernoff, Sato, Salfity, Sarria and Belecky-Adams</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483</citedby><cites>FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2282128021/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2282128021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29535610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chernoff, Ellen A G</creatorcontrib><creatorcontrib>Sato, Kazuna</creatorcontrib><creatorcontrib>Salfity, Hai V N</creatorcontrib><creatorcontrib>Sarria, Deborah A</creatorcontrib><creatorcontrib>Belecky-Adams, Teri</creatorcontrib><title>Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells</title><title>Frontiers in cellular neuroscience</title><addtitle>Front Cell Neurosci</addtitle><description>The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog , and a quiescent, activatable state in a slowly growing adult salamander , the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. and isoforms were cloned for the Axolotl as well as previously unknown isoforms of . Intact spinal cord ependymal cells show a loss of expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth , the cells are proliferative and maintain expression. Non-regeneration competent ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression and is a strong indicator of regeneration competence in the amphibian spinal cord.</description><subject>Ambystoma mexicanum</subject><subject>Axolotl regeneration</subject><subject>Biology</subject><subject>Cell differentiation</subject><subject>Developmental stages</subject><subject>Embryos</subject><subject>Ependymal cells</subject><subject>Epidermal growth factor</subject><subject>Epithelium</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Hybridization</subject><subject>Immunohistochemistry</subject><subject>Isoforms</subject><subject>Mesenchyme</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>mRNA</subject><subject>musashi-1</subject><subject>musashi-2</subject><subject>Nervous system</subject><subject>Neurogenesis</subject><subject>Neuroscience</subject><subject>Polymerase chain reaction</subject><subject>Progenitor cells</subject><subject>Regeneration</subject><subject>Reptiles &amp; amphibians</subject><subject>Signal transduction</subject><subject>Spinal cord injuries</subject><subject>spinal cord regeneration</subject><subject>Spinal plasticity</subject><subject>Stem cells</subject><subject>Toads</subject><subject>Xenopus</subject><subject>Xenopus regeneration</subject><issn>1662-5102</issn><issn>1662-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1PGzEQhi1UVGjonVO1EhcuScefsS-VUETbSFQgQaXeLK_Xho2c9WLvIvLv6yQUQU8z43nn1YwfhE4xzCiV6qvvrAszAljOAIDxA3SMhSBTjoF8eJMfoU85rwAEEUx-REdEccoFhmO0_DVmkx_aynRNdRNMHlrbDpsq-uqP62I_5l3n4jmGOITqtm87E6pFTE112buu2ay3pQshn6BDb0J2n1_iBP3-fnm3-Dm9uv6xXFxcTS1TMEwZaxSVmHkyF3NVey8YL3sRKilgx41QNbbYSy-NqhvGGPeUM8ftHJSSTNIJWu59m2hWuk_t2qSNjqbVu4eY7rVJ5YrgNKtxLZUV2LuGKW5qzmtqFVBhsbMln6Bve69-rNeusa4bkgnvTN93uvZB38cnzSXlQFkxOH8xSPFxdHnQ6zYXJsF0Lo5ZFzR0LoVkokjP_pOu4pjKbxYVkQQTCQQXFexVNsWck_Ovy2DQW-Z6x3xrLPWOeRn58vaI14F_kOlfYuam4w</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Chernoff, Ellen A G</creator><creator>Sato, Kazuna</creator><creator>Salfity, Hai V N</creator><creator>Sarria, Deborah A</creator><creator>Belecky-Adams, Teri</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180227</creationdate><title>Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells</title><author>Chernoff, Ellen A G ; Sato, Kazuna ; Salfity, Hai V N ; Sarria, Deborah A ; Belecky-Adams, Teri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambystoma mexicanum</topic><topic>Axolotl regeneration</topic><topic>Biology</topic><topic>Cell differentiation</topic><topic>Developmental stages</topic><topic>Embryos</topic><topic>Ependymal cells</topic><topic>Epidermal growth factor</topic><topic>Epithelium</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Hybridization</topic><topic>Immunohistochemistry</topic><topic>Isoforms</topic><topic>Mesenchyme</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>mRNA</topic><topic>musashi-1</topic><topic>musashi-2</topic><topic>Nervous system</topic><topic>Neurogenesis</topic><topic>Neuroscience</topic><topic>Polymerase chain reaction</topic><topic>Progenitor cells</topic><topic>Regeneration</topic><topic>Reptiles &amp; amphibians</topic><topic>Signal transduction</topic><topic>Spinal cord injuries</topic><topic>spinal cord regeneration</topic><topic>Spinal plasticity</topic><topic>Stem cells</topic><topic>Toads</topic><topic>Xenopus</topic><topic>Xenopus regeneration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernoff, Ellen A G</creatorcontrib><creatorcontrib>Sato, Kazuna</creatorcontrib><creatorcontrib>Salfity, Hai V N</creatorcontrib><creatorcontrib>Sarria, Deborah A</creatorcontrib><creatorcontrib>Belecky-Adams, Teri</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernoff, Ellen A G</au><au>Sato, Kazuna</au><au>Salfity, Hai V N</au><au>Sarria, Deborah A</au><au>Belecky-Adams, Teri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells</atitle><jtitle>Frontiers in cellular neuroscience</jtitle><addtitle>Front Cell Neurosci</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>12</volume><spage>45</spage><epage>45</epage><pages>45-45</pages><issn>1662-5102</issn><eissn>1662-5102</eissn><abstract>The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog , and a quiescent, activatable state in a slowly growing adult salamander , the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. and isoforms were cloned for the Axolotl as well as previously unknown isoforms of . Intact spinal cord ependymal cells show a loss of expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth , the cells are proliferative and maintain expression. Non-regeneration competent ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression and is a strong indicator of regeneration competence in the amphibian spinal cord.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>29535610</pmid><doi>10.3389/fncel.2018.00045</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5102
ispartof Frontiers in cellular neuroscience, 2018-02, Vol.12, p.45-45
issn 1662-5102
1662-5102
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_4b1b89c61fed495ab55b3c9036c1ec5b
source Publicly Available Content Database; PubMed Central
subjects Ambystoma mexicanum
Axolotl regeneration
Biology
Cell differentiation
Developmental stages
Embryos
Ependymal cells
Epidermal growth factor
Epithelium
Extracellular matrix
Gene expression
Hybridization
Immunohistochemistry
Isoforms
Mesenchyme
Molecular weight
Morphology
mRNA
musashi-1
musashi-2
Nervous system
Neurogenesis
Neuroscience
Polymerase chain reaction
Progenitor cells
Regeneration
Reptiles & amphibians
Signal transduction
Spinal cord injuries
spinal cord regeneration
Spinal plasticity
Stem cells
Toads
Xenopus
Xenopus regeneration
title Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Musashi%20and%20Plasticity%20of%20Xenopus%20and%20Axolotl%20Spinal%20Cord%20Ependymal%20Cells&rft.jtitle=Frontiers%20in%20cellular%20neuroscience&rft.au=Chernoff,%20Ellen%20A%20G&rft.date=2018-02-27&rft.volume=12&rft.spage=45&rft.epage=45&rft.pages=45-45&rft.issn=1662-5102&rft.eissn=1662-5102&rft_id=info:doi/10.3389/fncel.2018.00045&rft_dat=%3Cproquest_doaj_%3E2282128021%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282128021&rft_id=info:pmid/29535610&rfr_iscdi=true