Loading…
Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells
The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog , and a quiescent, activatable state in a slowly growing adult salamander , the Axolotl. Epe...
Saved in:
Published in: | Frontiers in cellular neuroscience 2018-02, Vol.12, p.45-45 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483 |
container_end_page | 45 |
container_issue | |
container_start_page | 45 |
container_title | Frontiers in cellular neuroscience |
container_volume | 12 |
creator | Chernoff, Ellen A G Sato, Kazuna Salfity, Hai V N Sarria, Deborah A Belecky-Adams, Teri |
description | The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog
, and a quiescent, activatable state in a slowly growing adult salamander
, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both
and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein
(msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent
tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is
expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells.
and
isoforms were cloned for the Axolotl as well as previously unknown isoforms of
. Intact
spinal cord ependymal cells show a loss of
expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while
displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent
tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth
, the cells are proliferative and maintain
expression. Non-regeneration competent
ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression
and
is a strong indicator of regeneration competence in the amphibian spinal cord. |
doi_str_mv | 10.3389/fncel.2018.00045 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_4b1b89c61fed495ab55b3c9036c1ec5b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b1b89c61fed495ab55b3c9036c1ec5b</doaj_id><sourcerecordid>2282128021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhi1UVGjonVO1EhcuScefsS-VUETbSFQgQaXeLK_Xho2c9WLvIvLv6yQUQU8z43nn1YwfhE4xzCiV6qvvrAszAljOAIDxA3SMhSBTjoF8eJMfoU85rwAEEUx-REdEccoFhmO0_DVmkx_aynRNdRNMHlrbDpsq-uqP62I_5l3n4jmGOITqtm87E6pFTE112buu2ay3pQshn6BDb0J2n1_iBP3-fnm3-Dm9uv6xXFxcTS1TMEwZaxSVmHkyF3NVey8YL3sRKilgx41QNbbYSy-NqhvGGPeUM8ftHJSSTNIJWu59m2hWuk_t2qSNjqbVu4eY7rVJ5YrgNKtxLZUV2LuGKW5qzmtqFVBhsbMln6Bve69-rNeusa4bkgnvTN93uvZB38cnzSXlQFkxOH8xSPFxdHnQ6zYXJsF0Lo5ZFzR0LoVkokjP_pOu4pjKbxYVkQQTCQQXFexVNsWck_Ovy2DQW-Z6x3xrLPWOeRn58vaI14F_kOlfYuam4w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282128021</pqid></control><display><type>article</type><title>Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Chernoff, Ellen A G ; Sato, Kazuna ; Salfity, Hai V N ; Sarria, Deborah A ; Belecky-Adams, Teri</creator><creatorcontrib>Chernoff, Ellen A G ; Sato, Kazuna ; Salfity, Hai V N ; Sarria, Deborah A ; Belecky-Adams, Teri</creatorcontrib><description>The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog
, and a quiescent, activatable state in a slowly growing adult salamander
, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both
and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein
(msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent
tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is
expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells.
and
isoforms were cloned for the Axolotl as well as previously unknown isoforms of
. Intact
spinal cord ependymal cells show a loss of
expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while
displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent
tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth
, the cells are proliferative and maintain
expression. Non-regeneration competent
ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression
and
is a strong indicator of regeneration competence in the amphibian spinal cord.</description><identifier>ISSN: 1662-5102</identifier><identifier>EISSN: 1662-5102</identifier><identifier>DOI: 10.3389/fncel.2018.00045</identifier><identifier>PMID: 29535610</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Ambystoma mexicanum ; Axolotl regeneration ; Biology ; Cell differentiation ; Developmental stages ; Embryos ; Ependymal cells ; Epidermal growth factor ; Epithelium ; Extracellular matrix ; Gene expression ; Hybridization ; Immunohistochemistry ; Isoforms ; Mesenchyme ; Molecular weight ; Morphology ; mRNA ; musashi-1 ; musashi-2 ; Nervous system ; Neurogenesis ; Neuroscience ; Polymerase chain reaction ; Progenitor cells ; Regeneration ; Reptiles & amphibians ; Signal transduction ; Spinal cord injuries ; spinal cord regeneration ; Spinal plasticity ; Stem cells ; Toads ; Xenopus ; Xenopus regeneration</subject><ispartof>Frontiers in cellular neuroscience, 2018-02, Vol.12, p.45-45</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2018 Chernoff, Sato, Salfity, Sarria and Belecky-Adams. 2018 Chernoff, Sato, Salfity, Sarria and Belecky-Adams</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483</citedby><cites>FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2282128021/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2282128021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29535610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chernoff, Ellen A G</creatorcontrib><creatorcontrib>Sato, Kazuna</creatorcontrib><creatorcontrib>Salfity, Hai V N</creatorcontrib><creatorcontrib>Sarria, Deborah A</creatorcontrib><creatorcontrib>Belecky-Adams, Teri</creatorcontrib><title>Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells</title><title>Frontiers in cellular neuroscience</title><addtitle>Front Cell Neurosci</addtitle><description>The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog
, and a quiescent, activatable state in a slowly growing adult salamander
, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both
and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein
(msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent
tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is
expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells.
and
isoforms were cloned for the Axolotl as well as previously unknown isoforms of
. Intact
spinal cord ependymal cells show a loss of
expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while
displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent
tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth
, the cells are proliferative and maintain
expression. Non-regeneration competent
ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression
and
is a strong indicator of regeneration competence in the amphibian spinal cord.</description><subject>Ambystoma mexicanum</subject><subject>Axolotl regeneration</subject><subject>Biology</subject><subject>Cell differentiation</subject><subject>Developmental stages</subject><subject>Embryos</subject><subject>Ependymal cells</subject><subject>Epidermal growth factor</subject><subject>Epithelium</subject><subject>Extracellular matrix</subject><subject>Gene expression</subject><subject>Hybridization</subject><subject>Immunohistochemistry</subject><subject>Isoforms</subject><subject>Mesenchyme</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>mRNA</subject><subject>musashi-1</subject><subject>musashi-2</subject><subject>Nervous system</subject><subject>Neurogenesis</subject><subject>Neuroscience</subject><subject>Polymerase chain reaction</subject><subject>Progenitor cells</subject><subject>Regeneration</subject><subject>Reptiles & amphibians</subject><subject>Signal transduction</subject><subject>Spinal cord injuries</subject><subject>spinal cord regeneration</subject><subject>Spinal plasticity</subject><subject>Stem cells</subject><subject>Toads</subject><subject>Xenopus</subject><subject>Xenopus regeneration</subject><issn>1662-5102</issn><issn>1662-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1PGzEQhi1UVGjonVO1EhcuScefsS-VUETbSFQgQaXeLK_Xho2c9WLvIvLv6yQUQU8z43nn1YwfhE4xzCiV6qvvrAszAljOAIDxA3SMhSBTjoF8eJMfoU85rwAEEUx-REdEccoFhmO0_DVmkx_aynRNdRNMHlrbDpsq-uqP62I_5l3n4jmGOITqtm87E6pFTE112buu2ay3pQshn6BDb0J2n1_iBP3-fnm3-Dm9uv6xXFxcTS1TMEwZaxSVmHkyF3NVey8YL3sRKilgx41QNbbYSy-NqhvGGPeUM8ftHJSSTNIJWu59m2hWuk_t2qSNjqbVu4eY7rVJ5YrgNKtxLZUV2LuGKW5qzmtqFVBhsbMln6Bve69-rNeusa4bkgnvTN93uvZB38cnzSXlQFkxOH8xSPFxdHnQ6zYXJsF0Lo5ZFzR0LoVkokjP_pOu4pjKbxYVkQQTCQQXFexVNsWck_Ovy2DQW-Z6x3xrLPWOeRn58vaI14F_kOlfYuam4w</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Chernoff, Ellen A G</creator><creator>Sato, Kazuna</creator><creator>Salfity, Hai V N</creator><creator>Sarria, Deborah A</creator><creator>Belecky-Adams, Teri</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180227</creationdate><title>Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells</title><author>Chernoff, Ellen A G ; Sato, Kazuna ; Salfity, Hai V N ; Sarria, Deborah A ; Belecky-Adams, Teri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ambystoma mexicanum</topic><topic>Axolotl regeneration</topic><topic>Biology</topic><topic>Cell differentiation</topic><topic>Developmental stages</topic><topic>Embryos</topic><topic>Ependymal cells</topic><topic>Epidermal growth factor</topic><topic>Epithelium</topic><topic>Extracellular matrix</topic><topic>Gene expression</topic><topic>Hybridization</topic><topic>Immunohistochemistry</topic><topic>Isoforms</topic><topic>Mesenchyme</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>mRNA</topic><topic>musashi-1</topic><topic>musashi-2</topic><topic>Nervous system</topic><topic>Neurogenesis</topic><topic>Neuroscience</topic><topic>Polymerase chain reaction</topic><topic>Progenitor cells</topic><topic>Regeneration</topic><topic>Reptiles & amphibians</topic><topic>Signal transduction</topic><topic>Spinal cord injuries</topic><topic>spinal cord regeneration</topic><topic>Spinal plasticity</topic><topic>Stem cells</topic><topic>Toads</topic><topic>Xenopus</topic><topic>Xenopus regeneration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernoff, Ellen A G</creatorcontrib><creatorcontrib>Sato, Kazuna</creatorcontrib><creatorcontrib>Salfity, Hai V N</creatorcontrib><creatorcontrib>Sarria, Deborah A</creatorcontrib><creatorcontrib>Belecky-Adams, Teri</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernoff, Ellen A G</au><au>Sato, Kazuna</au><au>Salfity, Hai V N</au><au>Sarria, Deborah A</au><au>Belecky-Adams, Teri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells</atitle><jtitle>Frontiers in cellular neuroscience</jtitle><addtitle>Front Cell Neurosci</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>12</volume><spage>45</spage><epage>45</epage><pages>45-45</pages><issn>1662-5102</issn><eissn>1662-5102</eissn><abstract>The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog
, and a quiescent, activatable state in a slowly growing adult salamander
, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both
and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein
(msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent
tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is
expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells.
and
isoforms were cloned for the Axolotl as well as previously unknown isoforms of
. Intact
spinal cord ependymal cells show a loss of
expression between regeneration-competent (NF 50-53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while
displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent
tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth
, the cells are proliferative and maintain
expression. Non-regeneration competent
ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression
and
is a strong indicator of regeneration competence in the amphibian spinal cord.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>29535610</pmid><doi>10.3389/fncel.2018.00045</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5102 |
ispartof | Frontiers in cellular neuroscience, 2018-02, Vol.12, p.45-45 |
issn | 1662-5102 1662-5102 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_4b1b89c61fed495ab55b3c9036c1ec5b |
source | Publicly Available Content Database; PubMed Central |
subjects | Ambystoma mexicanum Axolotl regeneration Biology Cell differentiation Developmental stages Embryos Ependymal cells Epidermal growth factor Epithelium Extracellular matrix Gene expression Hybridization Immunohistochemistry Isoforms Mesenchyme Molecular weight Morphology mRNA musashi-1 musashi-2 Nervous system Neurogenesis Neuroscience Polymerase chain reaction Progenitor cells Regeneration Reptiles & amphibians Signal transduction Spinal cord injuries spinal cord regeneration Spinal plasticity Stem cells Toads Xenopus Xenopus regeneration |
title | Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Musashi%20and%20Plasticity%20of%20Xenopus%20and%20Axolotl%20Spinal%20Cord%20Ependymal%20Cells&rft.jtitle=Frontiers%20in%20cellular%20neuroscience&rft.au=Chernoff,%20Ellen%20A%20G&rft.date=2018-02-27&rft.volume=12&rft.spage=45&rft.epage=45&rft.pages=45-45&rft.issn=1662-5102&rft.eissn=1662-5102&rft_id=info:doi/10.3389/fncel.2018.00045&rft_dat=%3Cproquest_doaj_%3E2282128021%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-44d93814f27679bff645062238301e5a69b1c1f8f8a9bd4445f354e5c70998483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282128021&rft_id=info:pmid/29535610&rfr_iscdi=true |